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Spin-coefficients and null tetrad components of the Ricci tensor and the Weyl conform tensor are 
evaluated in terms of a single complex gravitational potential E. while null tetrad components of the 
electromagnetic stress energy tensor are evaluated in terms of a second complex potential <1>. All the 
results are expressed elegantly in terms of a differential operator 15. similar to the "thop" of Newman 
and Penrose. The problem of finding physically pertinent stationary axially symmetric 
Einstein-Maxwell fields is reduced to the search for a complex solution ~o(x , y) of one nonlinear 
differential equation subject to simple subsidiary conditions. 

I. INTRODUCTION 

Our objective is the systematic description of those 
space-times which may be regarded as representing the 
gravitational fields of bounded uniformly rotating axially 
symmetric sources. Until recently the only known exact 
solution of Einstein's field equations having these attri
butes was the Kerr metric. 1 However, Tomimatsu and 
Sato, using this author's complex potential formalism, 
have now discovered new exact solutions which belong 
to the class in which we are interested. 2 

In the complex potential formulation of the axial sym
metry problem one seeks a solution of the nonlinear 
differential equation 

(1) 

where V is the gradient operator and V 2 is the three
dimensional Laplacian operator. 3 Instead of the canoni
cal (p, z) coordinates of Weyl we use prolate spheroidal 
coordinates (x,y) defined by 

p == [(x2 - 1)(1- y2))1/2, z ==xy. 

Then the basic field equation (1) assumes the highly 
symmetrical form 

~o~o* - 1 (0 a~o a a~o) (x2-1) + - (1- y 2)-
X 2 - Y 2 ax ax ay ay 

2~o* [ (a~.o)2 (il~o) 2J (x 2 - 1) -ax + (1 - y2) -ay . x2- y2 

The fairly obvious solution 

~o == x cos,\. - iy sin'\' 

(2) 

(3) 

(4) 

may be used to generate the Kerr metric (or indeed the 
charged Kerr metric), while the less obvious solution 

X 4 cos 2,\. + Y 2 sin 2,\. - 2ixy (x 2 - Y 2) COS'\' sin'\' - 1 
~o == 2x(x2 - 1) cos,\. - 2iy(l- y2) sin'\' 

(5) 

gives rise to the simplest of the new metrics published 
by Tomimatsu and Sato. 

We have utilized the same complex potential (5) to gene
rate a new solution of the coupled Einstein-Maxwell 
equations, corresponding to a uniformly rotating axially 
symmetric charged source. 4 All of the basiC equations 
which we employed in our analysis will be written in 
terms of a covariant differential operator "thop" simi
lar (but not identical) to that introduced by Newman and 
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Penrose in another context. 5 This Simplifies immensely 
the task of generating from the complex potential the 
metric tensor components, the spin coeffiCients, and the 
Weyl tensor components, when a coordinate system other 
than the Weyl canonical coordinate system is employed. 

It is hoped that the availability of this concise formalism 
will encourage others to pursue the quest for physically 
pertinent solutions of the baSic field equation (3). In 
particular, it is certain that there exist other rational 
functions ~o(x, y) which satisfy this field equation. 

II. NULL TETRAD FORMALISM 

As in so many other applications of general relativity, a 
null tetrad formalism is advantageous in dealing with 
problems involving stationary axially symmetric fields. 
The symbols k, m, t, and t* will denote two real and two 
complex null vector fieldS, among which the only non
vanishing inner products are6 

(6) 

The corresponding differential forms will be denoted by 
the symbols k,m, t and t*, while the non-vanishing inner 
products will be 

kim == t I t* = 1. (7) 

A basis for 2-forms can be constructed by forming ex
terior products of the basic I-forms. In particular, we 
shall employ the basic 2-forms 

B + = kt, BO = km + tt*, and B_ = mt*, (8) 

all of which correspond to the same eigenvalue of the 
duality operator. (The symbol /\, which is so often used 
in connection with exterior calculus, will be suppressed 
between differential forms). 

The I-forms defined by 

u == d~ I!!! + d! I ~, and w =: dm I t* 
(9) 

are evaluated in practice by solving the equations 

and 

(lOa) 

(lOb) 

(IOc) 

A knowledge of u, v, and w is important both for con
siderations of the equations of motion and for proceed-
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ing to the Riemann tensor. The twelve complex Newman
Penrose" spin-coefficients" are obtained from u, v, and 
W by projecting these I-forms onto the basic I-forms 
k, m, t, and t*. For example, the spin coefficient common
ly called the "shear" is given by 

V t = t r v = t r d!! "I £ = tv kll :v til . (11) 

The Weyl conform tensor may be characterized com
pletely in terms of five complex fields ci (i = - 2, ... , 
+ 2), where the index denotes the" spin-weight" of the 
field,7 while the Ricci tensor may be characterized 
completely in terms of the Ricci scalar R and the null 
tetrad components of the "reduced Ricci tensor" 

(12) 

In practice, all of these fields may be evaluated by ob
serving that 

dv + vu = caB_ + C 1B O + (co + lR/12)B+ 

+ ~ SkkB_ * + ~ S k~O * + ~ SttB+ *, (13a) 

du - 2wv = - 2[c 1B_ + (co - lR/24)B o + c_ 1B+ 

+ is kt*B- * + i Stt*B o - i Sm~+ *], (13b) 

dw - wu = (co + lR/12)B_ + C1B O ,+ c 2B. 

+ ! St*t*B_ * - ~ Smt.Bo * + i SmmB. *, (13c) 

III. STATIONARY AXIALLY SYMMETRIC SPACE
TIMES 
In the case of a stationary axially symmetric space
time under a wide variety of circumstances coordinates 
p, z, ¢, and T may be introduced so that the I-forms 

a 1 = f- 1/2p-ldp, a2 = f-1/2P-1dz, 

a3 = f- 1/2Rdcp, a4 = f 1/2(dT - wdcp) 
(14) 

constitute an orthonormal tetrad system. 8 Here f, w, P, 
and R are real functions of p and z only. Our null tetrad 
system will in turn be defined by 

t = (l/v'2)(a 1 + ia2), 

k = (1/v'2)(a3 - a4), 

t* = (1/v'2)(a1 - ia2 ), 

m = (1/v'2)(a3 + a4). 
(15) 

A fairly simple calculation involving Eqs. (10) yields six 
nonvanishing spin coefficients, which we here express 
in manifestly covariant form: 9 

U t = - (1/ ..J2)j1/2 t> (loP) - (1/2v'2)f-1I2G+, (16a) 

u t* = (1/v'2)j112t)* (InP) + (1/2v'2)f- 1I2G_, (16b) 

vir = - (1/2v'2)j112R-lt)R + (1/2..J2)f-1I2G+, (16c) 

vm = - (l/2..J2)j112R-lt)R, (16d) 

w k = - (1/2..f2)j112R-lt)*R, (16e) 

wm = - (1/2.J2)j112R-lt)*R + (1/2..f2)f- 1/2G_. (16f) 

The quantities 

G+ = 'Of - R- 1f 2'Ow, 

G_ = 'O*f + R-lj2'O*w 
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have, respectively, spin weight plus one and minus one. 
The operators '0 and t)* are defined as follows for a 
field 17 of spin weight s: 

t)n = Pl-SV(ps17), '0*17 = Pl+SV*(P-s17), (18) 

where (in the p-z coordinate system) 

.... =l....+.l.... 
v op t oZ . (19) 

The operators t) and t* raise and lower spin weight by 
one, respectively. 

Utilizing Eq. (13), one may show that in our case 

(20) 

while the algebraically independent nonvanishing com
ponents of the Ricci tensor are given by the following 
manifestly covariant expressions. 

R-1t*'OR = if-1(R - 4Stt *), 

tG_ - 'O*G+ = 2(S"" - Smm), 

~f[R-l'O*(RG.) + R-1t(RGJ] - G+G_ 

(21a) 

(21b) 

= ~ f[R - 4Stt* - 2(Su + S7I,m)]' (21c) 

R-1'OtR + ~ f-2G+G_ * = 2f- 1S w 

'0*'0 (InP) - t f-2(G+G+ * + G_ G_ *) 

(21d) 

= - if- 1[R + 4Stt* - 2(S"" + Smm)]' (2le) 

The last equation is, however, derivable from the others 
by virtue of the Bianchi identities: 

We also find that 

C 1 = c_ 1 = 0, (22) 

while the nonvanishing components of the Weyl conform 
tensor are given by the following manifestly covariant 
expressions: 

C2 -! Stt = - t[2'OG+ + f-lGn 

Co + R/12 - i (S"" + Smm) 

(23a) 

= - t[- t*G+ - 'OG_ + f-1G+GJ, (23b) 

(23c) 

For an axially symmetric stationary space-time des
cribed by Eq. (14), only three Petrov types are possible: 

(1) Degenerate type N-here only c 2 or c_2 (but not 
both) are nonvanishing. This case is not particularly 
interesting if you seek fields which are asymptotically 
I>chwarzschild. 
(2) Degenerate type D-here either: 

(a) only Co is nonvanishing, or 
(b) c 2c_ 2 = 9c~. The Kerr metric has this form 
of conform tensor when our null tetrad system 
is employed. 

(3) Algebraically general space-times-the new 
Tomimatsu-Sato solution falls in this class. Hope
fully, in the future more thought will be given to the 
refined classification of algebraically general space
times. 

Equations (17), (21), and (23) may be written directly in 
terms of the prolate spheroidal coordinates defined by 
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the transformation (2). It suffices to note that in this 
system of units the differential operator V becomes 

V == A2-l ~ + i.Jl_y2 ~ (24) 
AX oy' 

while the line element assumes the form 

- f(dT - wdcp)2. (25) 

IV. COMPLEX POTENTIAL DESCRIPTION OF 
ELECTROVAC FIELDS 

In those regions of space-time where the stress-energy 
is purely electromagnetic, one has 

R == 0 and SJ.'Y = 81TTJ.'Y' 

where 

and the electromagnetic field tensor FI-' y is given in 
terms of the 4-potential AI-' by 

F ==_o_A __ o_A. 
I-' y ax I-' y oX Y I-' 

(26) 

(28) 

Our attention will be directed toward static fields for 
which Al == A2 == 0 and for which A3 and A4 are func
tions of p and z alone. In this case it is advantageous to 
introduce a magnetic scalar potential A3 such that 

(29) 

In fact, the electromagnetic field tensor and the stress
energy tensor may be expressed entirely in terms of the 
complex potential 

(30) 

In particular, the nonvanishing null tetrad components of 
the reduced Ricci tensor are given by 

Skk = - (~~)(tl*~*), 

Smm == - (~*~)(~~*), 

Sit = (M»)(~~*) = (St*I*)*' 

(31a) 

(3lb) 

(31c) 

A "duality rotation" corresponds to a transformation 
~ -? ei~, under which the stress tensor and the gravita
tional field remain unchanged. 

In view of the vanishing of R - 4SII *, Eq. (21a) implies 
that R(p, z) is a harmonic function of p and z. As a re
sult one may introduce the Weyl canonical coordinate 
system in which R = p. The fact that little progress 
has been made in the analysis of stationary axially 
symmetric interior solutions may be attributed to the 
nonvanishing of the right side of Eq. (2la) when matter 
is present. 

Equation (21b) implies the existence of a complex scalar 
potential £ such that 

Equation (21c), which may be cast into the form 

(33a) 
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assumes with the Maxwell field equation 

the role of prinCipal field equation in the complex poten
tial formalism. The remaining gravitational field equa
tion (21d), which in the present case assumes the form 

(34) 

may be employed in order to evaluate P (which appears 
in the definition of "thop") once Eqs. (33) have been 
solved for EO and~. Finally, comparing Eqs. (17) and 
(32), we find that f and w may be evaluated using the 
equations 

f= Ref + ~*~, 

V. UTILITY OF THE ~o POTENTIAL 

(35a) 

(35b) 

As suggested in Paper II, we may consider electrovac 
fields for which E is an analytic function of ~. In this 
case we may write both £ and ~ in terms of a new com
plex potential ~ such that 

f = (~- 1)/(~ + 1) and ~ == q/(~ + 1), (36) 

where q is a constant, which we may temporarily regard 
as real, since the electromagnetic fields appropriate for 
complex values of q may be obtained later by a duality 
rotation. 

The prinCipal field equation (33) may now be written 

(~o*~o - l)[p-l~*(ptl~o) + p-l~(p~*~o)l 

= 4~o *(tl~o)(tl* ~o), (37) 

where 

(38) 

Since Eq. (37) makes no reference to q, we have reduced 
the electrovac problem to the vacuum problem. 

We should now like to discuss certain general features 
of the ~o potential and of the prolate spheroidal coordi
nate system, which make them particularly appropriate 
for the study of stationary axially symmetric fields. 

The Schwarz schild solution corresponds to ~o = x; so 
does the Reissner-Nordstrom solution. Since we wish 
to center our attention upon solutions of Einstein's field 
equations which are asymptotically Schwarzschild, we 
shall demand that, for large values of x, ~o should be
have as some real constant times x. 

Equation (37), when expressed in terms of prolate 
spheroidal coordinates, assumes the form (3). It should 
be observed that if ~o(x, y) is a solution of Eq. (3), then 
new solutions can be constructed by combinations of the 
following procedures: 

(1) complex conjugation, 
(2) replacement of ~o by its reCiprocal, 
(3) multiplication by a constant number of 

modulus 1, 
(4) substitution of x -? - x, 
(5) substitution of y -? - y, 
(6) interchanging x and y. 

(39) 

Of course, these procedures can be expected to yield 
physically uninteresting solution most of the time. In 
order to select physically interesting solutions with a 
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plane of symmetry orthogonal to the axis of symmetry, 
we propose that the following additional requirements 
be imposed upon ~o: 

~o(- x,y) = - ~o*(x,y), 

~o(x,- y) = + ~o*(x,y). 

The field equation (34) may be replaced by 

(40a) 

(40b) 

(41) 

which implies immediately that the metric function P 
does not depend upon the choice of q. Once one has 
evaluated it for the vacuum field, one-may carry it over 
for the charged version of the field. 

The metric function 

f = (~o~o* - 1)2/1 ~o + (1- q2)-1/212 (42) 

is easily evaluated, so we need only consider the evalua
tion of the w field. 

If the field ~o(x,y) satisfies the condition (40a), then 
from Eq. (35b) it may be shown that 

(1 - q2) 1/2 Even(w) = ~ [(1 _ q2) 1/2 

+ (1 - q2)-1/21 Even(wo), (43a) 

(1 - q2) 1/2 Odd(w) = Odd(wo), (43b) 

where "Even" and "Odd" refer to the parts of the func
tion which are even and odd in x, respectively. Thus, 
once Wo has been constructed for the vacuum field, w 
may be inferred immediately for the electrovac field. 
The function Wo is, however, governed by the differential 
equation 

p-lt)W O = [(!;o + 1)2t)~0* - (~o* + 1)2t)~OV(~o~0* - 1)2. 

(44) 

VI. CONCLUSIONS 

While the study of stationary axially symmetric fields 
remains considerably more difficult than the study of 
static axially symmetric fields initiated by H. Weyl in 
1917, the complex potential formalism has at least iso
lated certain key aspects of the problem from the com
plexities of the four-dimensional space-time. One does 
not even have to understand relativity theory in order 
to attack the problem of finding new solutions of Eq. (3). 

It is clear that an infinity of solutions remain to be diS
covered. If one introduces a new complex potential t/I 
such that 

~o = - cotht/l, (45) 

then this field satisfies the equation 

v 2 t/1 = 2i tan(2 Imt/l)Vt/I . vt/I, (46) 

where we have reverted to the notation employed in the 
Introduction. In the static case this reduces to Laplace's 
equation, so that the general solution can be found easily. 
In our case Eq. (46) provides a convenient vehicle for 
the application of approximation techniques. 

For fields satisfying conditions (40) we infer that 

t/I(- x, Y) = - t/I*(x, y), 

t/I(x,- y) = + t/I*(x,y). 
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The solutions of Eq, (46) having these attributes may be 
constructed explicitly to any desired order in 1/ x, Thus, 
one finds 

(48) 

where the real constants Qu are arbitrary and the real 
constants Q"l for l < k are determined once Qoo' Qll' ... , 
Qu are specified. In particular, Q"l = 0 if k - l is odd. 
The free parameters Qu playa role similar to multi
pole moments in Newtonian gravitation theory . 

A "gold ring" should be earned by the person who does 
for complex t/I what is so simple for real t/I; namely, 
construct the general solution of Eq. (46). While this 
prize may continue to be ellusive, because of the absence 
of a linear superposition prinCiple, a "silver ring" 
might be merited for the discovery of the general rela
tion between the values of the constants Qu, which 
govern the asymptotic structure of the field, and some
thing more directly associated with the structure of the 
source. What immediately comes to mind is the in
finite red shift surface, upon which I ~o 1 = 1. One might 
consider the shape of the infinite red shift surface, and 
the phase of ~o thereon, as descriptive of the structure 
of the source. The objective of this approach would be 
to relate this structure to the values of the parameters 
Qu ' In this manner perhaps one could circumvent the 
necessity of having exact solutions of the vacuum field 
equations. 

In the meanWhile we hope that more people will be en
couraged to search for specific exact solutions, a task 
which Tomimatsu and Sato have shown is not quite im
possible. The next "bronze ring" should be awarded 
for the discovery of an exact solutiQn outside the Tomi
matsu-Sato class. 
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We consider the set of C k bounded tensor fields of type (r,s) on R 4 in the topology of uniform Ck 

convergence. For each k ~ 2, the map sending a metric to its curvature tensor is shown to be analytic 
at the Minkowski metric. The same is true of the map sending a metric to its Einstein tensor. The 
well-known linearized theory of gravitation amounts to studying the directional derivatives of these 
maps. An iterative method for solving the full field equations along an analytic curve of Einstein 
tensors passing through zero is proposed. 

I. INTRODUCTION 

A central problem in the general theory of relativity 
concerns the stability of solutions to Einstein's field 
equations. PreCisely, given a four-manifold M, a stress
energy tensor T, and an exact solution g to the field 
equations E(g) = - T, the problem is to determine all 
"nearby" solutions and to examine, at least qualitatively, 
their physical properties. (E(g) = {Rab - tRgab}dx a ® 
dx b is the Einstein tensor of the metric g. The map 
g ~ E(g) is called the Einstein map.) There are essen
tially two approaches to the problem, depending on what 
one means by the word "nearby." 

(a) In the first instance, one considers all metrics g' 
which are in some sense close to g, computes the 
energy-momentum tensors - E(g'), and examines the 
physical properties of the resulting space-times (M,g'). 
One normally requires the introduction of a topology on 
the set of Lorentz metrics in order to determine whether 
or not two metrics are close to one another. 

(b) In the second instance, one perturbs the energy
momentum tensor T to a nearby T' and attempts to 
solve the resulting field equations E(g') = - T'. 

In connection with (a) if one regards all Lorentz metrics 
on M as being on an equal (mathematical footing, it 
appearsl that the only acceptable choice for a topology 
is the Whitney fine e" topology. However, it frequently 
happens that one is not concerned with all such metriCS, 
but only those g' which are in some sense close to a 
fixed metric g. In such cases, it is possible to construct 
a topology which is considerably more tractable than 
the Whitney topology and at the same time appears to 
provide a suitable analytiC framework within which to 
attack problem (b). 

In this paper, we examine such a topology in the particu
lar case where M = R,4 and the preferred metric is a 
fixed Minkowski metric.1). Section II introduces the 
necessary mathematical formalism; the set of Lorentz 
metrics close to 1) is shown to be an open subset of a 
Banach space. In Sec. III we show that the curvature 
map (the map associating with each Lorentz metric its 
Riemann tensor) is analytic in a neighborhood of 1). 
[The metrics themselves need only be e k (k ~ 2).] It 
follows immediately that the Einstein map g ~ E(g) is 
analytic at 1). In Sec. IV we briefly discuss the linearized 
theory of gravitation, which is particularly well-posed 
in this formalism: The linearized Einstein tensor of 
the metric 1) + h is simply the derivative of E at 1) in 
the direction of h. In Sec. V we discuss an iterative 
procedure for solving the full field equations along an 
analytic curve of stress-energy tensors passing through 
zero. 

II. MATHEMATICAL PRELIMINARIES 
Fix, once and for all, a global coordinate system (xa ) on 
R4 and the Minkowski metric 1) defined by these co-
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ordinates,1)ab = diag{l, -1, -1, -I}. Let S" denote the 
set of e" twice-covariant symmetric tensor fields on 
R4, and for hE S,,' X E R4, put 

Ilh(X)II,,== < max < {lhab(X)I,lhcd.e(x)I, ... , 
l-a,b ..... -4 

1 hij ' ml'm
2 
... m" (x) I}, (1) 

and set 

Define 

(3) 

The 1·1 Ii norm is easily seen to be equivalent to the 
standard e" norm; this particular formulation is slightly 
easier to calculate with. <B" is a Banach space. Simi
larly, let '0" denote the set of four- covariant e" tensor 
fields on R4 having the symmetries of curvature ten
sors (R[ab][cd] = R abcd , Ra[bcd] = 0). For R E '0", de
fine IRI" as above and let 

(4) 

W" is a Banach space as well. Notice that 1) E <B k and 
that the ball of radius 1/4 about 1) consists entirely of 
Lorentz metricsj it is these which we shall call "close" 
to 1). Thus we are concerned with an open ball in a 
Banach space. {Notice that the complete set of Lorentz 
metrics contained in <E" is not an open set; for example, 
(1/(1 + r 2)]1)(r2 = L:;a (xa)2] is not an interior point. 
This would be a real problem if we were interested in 
all Lorentz metrics.} 

III. ANALYTICITY OF THE CURVATURE MAP 

Let n be the map sending a nondegenerate e" metric 
to its e" -2 curvature tensor. As mentioned above, the 
domain of n contains an open ball around 1) in <Bk' 

Theorem: For any k ~ 2, the map 0: <B" ~ W"_2 is 
analytic at 1). Precisely, for any g in the ball of radius 
1/4 about 1), write g = 1) + h where I hi" < 1/4; then 

j times, (5) 
where, as usual, 

DjO(1)'(h, ••• ,h) = d~ ... dt 
j 1 

{Rabcd (1) + tlhl + ... + tjhj)dx a ® dx b ® dx c ® dxd}. 

t1= .. ·=tj=O 

hI = ···=hj=h 
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The series on the right converges in norm in the space 
W"-2' 

Proof: We exhibit the power series for 0(11 + h) and 
show that it converges to 0(11 + h). It is necessary to 
work in components; all raising and lowering of indices 
is done with 11 and the summation convention is em
ployed throughout. We have g = 11 + h, where Ih I" = 
a < 1/4. By long division, the components of the inverse 
matrix to g are 

This is a series of real-valued functions on JR4; we need 
to show uniform C" convergence. Put b == 4a < 1, and 
differentiate the series n times (0 :s n :s k). One finds 
without difficulty that, for any x E R4, 

I (hei1h. i 2h . is ••• h. d), a
1
a2 ••• t'l (x) 1< (j + l)nbJ+l. (8) 

'1 '2 'j ...,. 

Since .6;0 (j + l)nbi+l < co for b < 1 (ratio test), all the 
series for gcd, •• . ,gcd, a l ••. a" converge uniformly and 
absolutely on JR4 (Weierstrass test); and in the notation 
of Sec. II we have 

00 

== 1 +.6 (j + 1) "bJ+l < co. 
j=O 

So g-! is well defined. 

Let r~ (g) be the Christoffel symbols of g with respect 
to (x a). Setting Hdbc == Hhab,c + hac,/) - hoc,a}, we have 

with absolute and uniform C"-l convergence. Thus 
O(g) = RaIJcd(g)dxa ® dx b ® dx c ® dx d , where 

and we may expand and regroup in the following way: 

where we have convergence in the space 'W"_2' with 
Has[cHleld)b == t(HascHedb - HasaHeco). 

(10) 

(11) 

Pemark: Because of the absolute and uniform con
vergence, it follows that the series for Ric(g) = 
Rcabtlg-1cddxa ® dx b == Rabdxa ® dx b and R(g) ::;:: Rabgab 
are also convergent. From this it follows immediately 
that the map E: ffi" -) ffi 10 -2 sending a Lorentz metric 
to its Einstein tensor is also analytic at 11 in the ball 
of radius 1/4. Similar remarks apply to the map send
ing a Lorentz metric to its conformal curvature tensor. 

IV. THE LINEARIZED THEORY OF GRAVITATION 

The best-known method for obtaining approximate solu
tions to the field equations is called the linearized 
theory (see Pirani, Ref. 2, for a fairly complete exposi
tion and references). It has often been remarked that it 
is not a particularly good method, and in this section we 
shall see preCisely why this is so. The linearized 
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theory proceeds roughly as follows. An energy-momen
tum tensor T is given; instead of solving the full equa
tions E{g) ::::: - T, one replaces E by a I inear operator 
L and conSiders the simpler equations L(g) = - T. 
L(g) is defined simply by writing g =: 11 + h, calculating 
E(11 + h), and retaining only those terms which are first 
order in h. The resulting linear system is then solved 
for h, and one obtains the apprOximate solution g =: 11 + h. 

Of course, if one now calculates the full Einstein tensor 
E(1J + h) for this metric, it will not be equal to - T. 
However, there is a fairly obvious relation between the 
two quantities, namely 

DE(TJ)' h =: - T. (12) 

This should be evident from the remarks in the pre
ceeding section; DE(11)' h is just the first term in the 
power series expansion of E(TJ + h}. In words, the 
linearized Einstein tensor is the derivative of the Ein
stein map at 11 in the direction of h. Similarly, the first 
term 00 (Tj)' h in the series (5) or (11) is iust the usual 
linearized curvature tensor of the metric TJ + h. 

Once it is recast in this formalism, the shortcomings 
of the linearized theory are readily apparent. The 
relationship between TJ + h and an exact solution to 
E(g) == - T is essentially nonexistent. What we have 
instead is 

E(11 + h) + T = f; ~ DIIE(11)' h 10; 
"=2 k. 

(13) 

a real solution (if it exists) to E(g) = - T is well 
apprOximated by the linearized solution only in the 
case that the entire power series on the right can be 
neglected. 

V. AN ITERATIVE METHOD FOR SOLVING THE 
FIELD EQUATIONS 

Consider a curve of the form 

00 t' 
get) = 11 +.6 h ""1' 

.=1 (i) L 
(14) 

where,for the sake of definiteness, I ~ I" < H-)i·l. Then 
for t E (- 1, 1), this defines an analytU) curve of metrics 
passing through 11 and lying in the ball of radius 1/4 
about 11 in CB". The image of this curve under the Ein
stein map will be an analytic curve passing through 0 
in ffill -2' Setting 

we have 

E(g(t)) = DE(TJ)' H(t) + (1/21) D2E(11HH(t), H(t)} 

+ (1/3!)D3E(11HH(t),H(t),H(t)) + .... (15) 

Expanding and regrouping according to powers of t, we 
have 

E(g(t» =: {lJE(1J)'( h Ht + {DE(11)( h ) 
(1) (2) 

I 

+ J)2E(1JH h, h )}t2 /2! 
(1) (1) 

n 
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+{DE(-ry)( h ) + 3D2E(1J)( h, h) + D3E(1j)( h, h, h)} 
(3) (1) (2) (1) (1) (1) 

"lII 
x t 3 /3! + .... (16) 

Now conversely, suppose we are given an analytic curve 

ti 
T -
(i) t! 

of stress-energy tensors with T(O) = O. Then we can 
try to find a solution curve of the form (l4). According 
to (16), the equations to be solved are then (in order) 

I: DE(1j)'( h ) = - T, for h, 
(1) (1) (1) 

il: DE(7)H h ) = - T - D2E(7)( h, h), for (h), 
(2) (2) (1) (1) '2 
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Ill: DE(1j)( h ) == - T - 3D2E(1j)( h, h) 
(3) (3) (1) (2) 

- D3 E(1j)( (~ ) (~) (~», for (~)' 

... etc. (17) 

It should be noted that at each stage of the iteration 
process, one has only to solve a linear equation, which 
is, in principle, possible. 

1 D. Lerner, Comm. Math. Phys. (to be published). 
2F. A. E. Pirani, in Lectures on General Relativity, 1964 Brandeis 

Summer Institute in Theoretical Physics, Vol. 1 (Prentice-Hal!, 
Englewood Cliffs, N. J., 1965). 



                                                                                                                                    

Asymptotically simple space-time manifolds 
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Asymptotic simplicity is shown to be k-stable (k,? 3) at any Minkowski metric on 1R4 in both the 
Whitney fine Ck topology and a coarser topology (in which the Ck twice-convariant symmetric 
tensors form a Banach manifold whose connected components consist of tensor field asymptotic 
to one another at null infinity). This result, together with a sequential method for solving the field 
equations previously proposed by the authors, allows a fairly straightforward proof that a well-known 
result in the linearized theory holds in the full nonlinear theory as well: There are no nontrivial (i.e., 
non-Minkowskian) asymptotically simple vacuum metrics on 1R4 whose conformal curvature tensors 
result from prescribing zero initial data on past null infinity. 

L INTRODUCTION 

The concept of asymptotically simple space-time mani
folds, introduced by Penrose,1,2 is a fruitful one in the 
study of asymptotic conditions in general relativity and 
one which Penrose has used to good advantage. 3 One 
would like to have more examples of asymptotically 
simple space-times than the single example now known, 
namely Minkowski space-time. In this paper it is shown 
that there are many asymptotically simple space-times; 
in fact, there is an open neighborhood of any Minkowski 
metric on ]R4 in the Whitney fine e k topology (k ~ 3) on 
the set of Lorentz metrics on ]R4 all of whose elements 
are asymptotically simple metrics. Using this result and 
a formulation for weak gravitational fields developed by 
the authors,4 we show that a certain linearized solution 
to the vacuum field equations has an exact counterpart 
in the full nonlinear theory. Section II deals with de
finitions and preliminaries; Sec. ITr gives a proof of the 
asserted result for asymptotically simple space-times; 
Sec. IV extends the known linear result to the full theory; 
and Sec. V gives some concluding remarks and conjec
tures. 

II. MATHEMATICAL PRELIMINARIES 

A space-time manifold is a pair (M,g) where M is a 
four-dimensional e 00 differentiable manifold and g is a 
e3 pseudo-Riemanian metric on M of signature -2 which 
is time-oriented and possesses no closed timelike C1 
curves. A space-time manifold (M,g) is said to be 
asymptotically simple if there exists a space-time mani
fold (M,l) with boundary whose interior is conformal 
to (M, g) with i = n2g, n > 0, which satisfies: 

(1) M is a e4 differentiable manifold with boundary 5 
and i is a e3 pseudo-Riemannian metric on m, 

(2) n is e 3 on M, n = 0 on 5, and dn ;>! 0 on 9, 

(3) Every maximally extended null geodesic in the in-
terior of M2 intersects 5 in precisely two pOints. 1 

Minkowski space-time (]R4, TJ) is an example of an asymp
totically simple space-time. The manifold (M, ii) whose 
interior is conformal to (]RI!, TJ) is obtained by construct
ing the conformally-compactified Minkowski space
time5 ,6 and then slicing this manifold apart along the 
light cone at infinity. The result is represented pic
torially in Fig.!. The points 1+, jD, and 1- are not points 
of 5. 

An exposition on the Whitney topologies applied to pro
blems in general relativity is given by Lerner,7 and 
only a brief summary will be given here. Given an ar
bitrary Riemannian metric fJ. on a differentiable mani
fold M, a Wo (Whitney fine CO) neighborhood base of a 
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FIG.! 

interior 
conformal to 

(IR4 ,7] ) 

CO tensor field t E rO(T~(M» is given by sets of the 
form 

WI'(t,E:(X»={S!SE rO(T~(M» 

and II s - t III' (x) < e:(x), \f x EM}. 

Here E:(x) is any positive continuous function on M and 
11'111' (x) is the J.1. norm in T~Mx' A W k (Whitney fine ek ) 

neighborhood base (k ~ 0) of a tensors field t E r k 
(T~(M» is given by sets of the form 

W:(t, e(x» :::: {s Is E r k( T~(M» and II s - till' (x) < e(x), 

II V(s - 0111' (x) < e(x), ••• , II v:(s - t)111' (x) < E(x), \f x EM}. 

where V~ denotes the totally symmetrized ith covariant 
derivative with respect to the Riemannian metric fJ.. 
This gives a convenient description of the Wk topologies 
(the Whitney fine e k topologies); an altogether equivalent 
formulation, which is manifestly independent of fJ. and 
perhaps more physically intuitive as well, is given in 
Ref. 7. 

The set of all C k Lorentz metrics (pseudo- Riemannian 
metric tensor fields of signature -2) on M will be de
noted by Lk(M). A property P on rk(T~(M» is said to 
be k-stable at a tensor t E r k(T;(M» if there exists an 
open Wk neighborhood of t all the elements of which 
possess property P. For example, geodesiC complete
ness is k-stable,k ~ 2, on Lk(M) as is time orientability. 
The purpose of Sec. III is to prove that asymptotic sim
plicity is k-stable,k ~ 3, at TJ in Lk. 

Another topology is used on L k(]R4) in Sec. IV which 
was introduced by Lerner and Porter.4 Given TJ and a 
Minkowski coordinate systems {Xi} on ]R4 in which TJ = 
ds 2 = (dxO)2 - (dX1)2 - (dX2)2 - (dX3)2, for any t E 

rk( T~ (]R4» set 

Ilt(x)lI k = max {It .. ·(x)!, 
components ••• 

It:::,' (x) I , ... , It:::, . .". (x) I} 

Copyright © 1974 American Institute of Physics 1416 
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where t ... (x) stands for the components of t in {x i} and 
, ... denotes coordinate derivatives with respect to {xi}. 
Let 

I tl k = sup{llt(x)lIkl x E R,4}. 

Define 

B~T.S) = {t E rk(T~)1 It Ik< co}. 

Then < B~ T. S ), I . I;; is a Banach space; the topology is 
equivalent to that of uniform ek convergence. 

Given a particular Minkowski metric 1/ on R4 and the 
conformal factor n mentioned in the definition of 
asymptotic simplicity, one can define the set of tensor 
fields of type (r, s) asymptotic to zero at null infinity: 

A~T.s) == {t E BlT.S): 02t extends to a ek tensor 

field on &1 with 02t = ° on 9}. 

[The conformal factor (0 2) used in the definition of 
AlT.s) for certain applications may be changed to another 
power of O. The factor 0 2 is the correct one to use for 
metrics asymptotic to 1/ in B (0.2).] AlT, S) is a closed 
subspace of BiT,S) and thus a Banach space in its own 
right. The setTk(T~(R4) is made into a Banach mani
fold by taking the sets 

{u" == a + AlT,s): a E rk(T~(R4»} 

for an (analytic) atlas. Two tensor fields a, (3 E 

rk(T~(R4» lie in the same connected component in this 
topology iff a - f3 is asymptotic to zero at null infinity. 
The fields a and {3 are then said to be asymptotic at 
infinity. This topology is called the A k topology on 
tensor fields. It is clear that the Wk topology is finer 
than the A k topology (any open set in the A II topology is 
open in the Wk topology as well). 

III. STABILITY AND ASYMPTOTIC SIMPLICITY 

Theorem 1: Asymptotic simplicity is a k- stable 
property,k? 3, in Lk(R4) at any Minkowski metric 7) on 
R4. 

Proof: It is necessary to exhibit an open Wk neigh
borhood, k ? 3, of 7) in Lk(R4), the Lorentz metrics in 
which are all asymptotically simple. First, there 
exists an open Wk neighborhood U 1 in fV1 - 5 of ii, all the 
Lorentz metrics in which are equal to ii on 5. Since 
fV1 - 5 is differomorphic to R4 by virtue of the conformal 
relatedness, an open Wk neighborhood U 1 of 1/ in R4 is 
obtained. All the Lorentz metrics in U1 are asymptotic 
to the Minkowski metric 1/. The Lorentz metrics in U 1 
satisfy the first two defining properties of asymptotic 
simplicity (using the same &1 and 0 as for (R4, 1/) and 
defining i = 02g for g E U 1)' 

The third defining property of asymptotic simplicity 
states that null geodesics are complete and that, intui
tively, they reach" infinity". This is certainly true for 
Minkowski space and an open Wk neighborhood of 1/ must 
be exhibited, all the Lorentz metrics in which exhibit 
this feature. To this end, it is noted that the spray of 1/ 
is certainly complete and that the completeness of a 
vector field is a stable property.7 [The spray of a me
tric g on M is the map sp: T M ~ TT M defined locally 
as sending (p, v p) ~ (p, v P' v p' - r(p)(v P' v p» where 
rep) is the connection of gat p. The spray of a metric 
is a second-order differential equation on M and its 
curves give the geodesics of g. Geodesic completeness 
of g means that the vector field sp(g) is complete.] Thus 
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there exists a WI!-l neighborhood of the spray of tj in 
r k-1( TTM) all the vector fields in which are complete. 
As the map sending a Lorentz metric to its spray is 
continuous, there exists an open neighborhood U 2 of 1/, 
all the metrics in which are geodesically complete. 
Let U 3 = U 1 n U 2' 

If a Minkowski coordinate system {t = xO, xl, X2, x3} is 
chosen for 1/, so that ds2 = dt2 - (dX1)2 - (dX2)2 -
(dx3)2, then any null geodesic in (R4,1/) has the property 
that it crosses each of the t = const hypersurfaces. 
Thus the null spray of 1/ [in these coordinates (Xi, Vi) --) 
(Xi,Vi,Vi,O) where 1/i·Vivj = 0] is transverse to the hy
persurfaces t 0 7f == cbnst, where 7f is the projection 
associated with the tangent bundle, TR4. This trans
versal property is stable and so there exists a Wk open 
neighborhood U 4 of 1/ containing only metrics whose 
null sprays are transverse to the hyper surfaces t 0 7f = 
const. Let U = U 3 n U 4' The metric s in U satisfy the 
properties (1) and (2) of asymptotically simplicity, and 
have complete null sprays transverse to each t 0 7f = 
constant hypersurface. The claim is that the metrics 
will also satisfy property (3). Null geodesics (maxi
mally extended) for a metric g in U cross each t = 
const hypersurface. Since null geodesics are confor
mally invariant, the image of a null geodesic of (R4,g) 
under the conformal map is a null geodesic of (M,i'!. 
Thus a null geodesic (maximally extended) of (M, g) 
can only fail to have two points on 5 if it contains [+, 

[0, or [-. See Fig. 2. But this is impossible as the past 
light cone of [+ is 5+, the light cone of [0 is 5, and the 
future light cone of [- is 5-. Thus, for example, the only 
null geodesics in (M,i'! containing [+ are those that 
lie on 5+ and no null geodesic from M - 11 can contain 
[+. Thus, we have an open Wk neighborhood U of 1/ in 
L(R4) containing only asymptotically simple space
times. 

So there are many asymptotically simple space-times 
based in R4; in particular, ones which are not confor
mally flat. 

A slightly stronger version of Theorem 1 can be proved. 

Theorem 1': Asymptotic simplicity is stable at 1/ in 
the A k topology on the set B I! of C k Lorentz metric s 
which are asymptotic to tj. 

The All tq>ology is coarser than the Wk topology and the 
additional asymptotic condition is essential. The proof 
proceeds Similarly to that above, with one making cer
tain that at each step the WI! open sets can be replaced 
with All open sets all the elements in which are asymp
totic to 1/. 

IV. CURVES OF LORENTZ METRICS 

Given a curve in LII(R4), k? 2, of Lorentz metrics at 
1/,g: t --) get) such that g(O) == 1/, the induced curve of 
Riemann tensors is denoted by 0: t ~ Riem(g(t» E 

rk-2( T~R4), the induced curve of Ricci tensors is de
noted by Ric: t ~ Ricci(g(t» E r k- 2 ( T~R4), and the in-

IR4 ___ ~/_t = constant 

----n ~----'JIO 

FIG. 2 
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duced curve of conformal tensors is denoted by Co: 
t-4 conf.(g(t)) EO: rk-2(T~(H4)). Ifg is inBlo,2) for 7) 

and Minkowski coordinate system {Xi}, then the three 
induced curves n, Ric, and Co have images in BL~4), 
BL9z 2) , and BL02,4) , respectively.4 If, in addition,g is 
analytic at 7), then the induced curves are all analytic 
at zero in the respective spaces. 

On the other hand; if an analytic curve is given at 0 in 
BL~,2), the question arises as to whether there exists 
an analytic curve in Blo,2) of Lorentz metrics at 7) 

which induces the given curve in B 1!l2,2) as its curve of 
Ricci tensors. This, in general, will not be the case; 
when it is true one can solve the field equations in ge
neral relativity by solving sequentially a set of linear 
partial differential equations. The difficulties are with 
respect to boundedness of the terms and convergence of 
the resulting sequence. An additional freedom in the 
resulting curve is fixed by appropriate initial conditions 
for g. This additional freedom is a useful adjunct in 
trying to find such an analytic curve of Lorentz metrics. 

Theorem 2: Let t -4 g(t) E Blo,2) (k ?: 3) be an 
analytic curve of vacuum metrics (Ric(g(t)) = 0, all 
t) on R4 with g(O) = 7). Suppose that 

(a) for all t,g(t) is asymptotic to 7), 

(b) for each t, the conformal curvature tensor of g(t) 
results from zero initial data on 5- in the confor
mally related (M, ii). 

Then g(t) is a curve of Minkowski metrics. 

Proof: Given a curve of Lorentz metrics analytiC 
at T/,g: t -4 g(t), the analyticity at 7) requires that 

00 t i 
g(t) == 7) + 6 h-:-. 

i=1 (i) z! 

The requirement that the curve be asymptotic to 7) is 
that the curve 

00 ti 
~ h
i=1 (j) i! 

by asymptotic to zero. Tensor fields of any given type 
in Bk (,) asymptotic to zero form a Banach space. 
There is an open interval about zero for which the 
curve g has its image in the set of asymptotically 
simple metrics on R4 as guaranteed by Theorem I'; 
let t be restricted to such an interval. The solution of 
the equations for the Ricci tensor and conformal tensor 
for this curve then proceeds sequentially. Since the 
corresponding maps Ric and Co are analytic at 7), the 
corresponding curves are completely determined by 
their derivatives for t == O. The zeroth derivative gives 
conditions automatically satisfied since Minkowski 
space-time has zero Ricci tensor and zero conformal 
tensor. The first derivative of the curve of Ricci tensors 
at t == 0 simply gives the vanishing of the linearized 
Ricci tensor for 7) + h (1), 

7)aa h ae ba _7)aa h be aa - 7)aa h aa be 
(1) , (1) . (l)' 

+ 7)aa h ba ae == O. 
(1) , 

The first derivative of the curve of conformal tensors at 
t = 0 yields the linearized conformal tensor C(1)abed 

of 7) + ~ (11 which must in the conformally related pic
ture (M, 7)) be obtained from zero initial data on the 
null Cauchy hypersurface 5-. The linearized conformal 
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tensor, C(l)abcd' satisfies the linearized Bianchi iden
tities 7)deC (1) abc d ,e = 0, whose spin or equivalent is 
VAA'I/I ABCD == 0 if 1/1 ABCD represents C(1)abcd' By using 
the techniques developed by Penrose1 for handling such 
zero rest-mass field equations in a conformally in
variant manner, a spinor field CPABCD = n- 11/1 ABCD is 
obtained on (M, ii) satisfying VAA' cP ABCD == O. Initial data 
for cP ABCD is given on the null Cauchy hypersurface 5-, 
namely zero data, and the solution at a point p EO: M of 
the initial value problem for the equation VAA'cp ABCD == 0 
can be obtained as a generalized Kirchoff integral over 
the intersection of the past light cone of p and the initial 
data surface 5-. 3 For zero initial data, the resulting 
field cP ABCD is zero and thus 1/1 ABCD = 0 or equivalently 
CO) abed = O. 

The fact that the linearized Ricci tensor and the linear
ized conformal tensor of 7) + h(1)h are both zero is 
equivalent to the vanishing of the linearized Riemann 
tensor. This fact is best exploited by using the Cart an 
structure equations in their linearized forms for the 
determination of h( 1)' The structure equations are 

de a + wa b /\ eb = 0, 

where ea is a basis for cotangent vector fields, w a b is 
the connection form whose Riemann curvature form is 
R a b' In the frame e a == dxa the metric 'Y/ + h (1) yields 
the linearized structure equations with linearized con
nection w a

b 

wa b /\ eb :::: 0, (1) 

dw a
b :::: O. (2) 

Equation (2) says that the I-form w a
b = wa bedxc 

is closed and since the manifold is Simply connected, 
w a b is exact, 

Equation (1) then gives J1 a b,cdxb A dxC = 0 or that the 
I-form J1 a = J1 a bdxb is closed. Again, Simple connec
tivity says that J1 a is exact, 

and thus 

w a
bC = aa bc' 

(1) , 

(3) 

(4) 

The tensor h(1) ab is obtained from the linearized equa
tion for the vanishing of the covariant derivative of 
the metric, i.e., Dg ab ;e (t) I t=O (h(1) ab)' resulting in 

(5) 

whose solution (absorbing constants of integration into 
a (1) a) is 

(6) 

where 

(J a = 7) ad (J d. 
(1) (1) 

The four functions (J (1) a are required to be C4 and to be 
appropriately bounded in B 4(O,O). 
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A coordinate transformation x' a = xa + t I] (1) a yields the 
same curve of metrics which, when expressed in the new 
coordinate system, has zero linear term: 

00 I t i 
1)+O·t+:B h""'l. 

i =2 (i) t. 

The next step in the sequential solution is to determine 
h' (:0 from the conditions imposed on the curve of Ricci 
terms (namely that it be the constant curve 0) and the 
curve of conformal tensors. The resulting equations for 
h' (2) are exactly those previously solved for h(1) and 
the same technique that resulted in Eq. (7) yields a 
curve of the form 

1) + O· t + 0 .t2 
+ i3 h II ~. 

2! i=3(;)i! 
(8) 

Continuing, it is seen that the resulting curve is a curve 
of Minkowski metrics as required. For each t, the 
transformation 

00 ti 
i a = x a +:B I] a -

i=1 (;) i! 

exhibits g(t) in a Minkowski coordinate system. 

V. CONCLUSION 

The following questions arise: 

(1) Is asymptotic simplicity Wk stable? Theorem 1 
is the proof that this is the case at any Minkowski 
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metric on R4, (R4, 1/). The proof utilizes some special 
properties of Minkowski space and no obvious generali
zations of the techniques involved exist. Also note that 
Theorem 1 gives the stability of weakly asymptotically 
simple spaces 1 at any weakly asymptotically simple 
space whose corresponding asymptotically simple space 
is in the open Wk neighborhood of (R4, 1) exhibited in 
the theorem. 

(2) Is it possible to use the techniques in Sec. IV to 
generate nontrivial analytic curves of solutions to pre
scribed field equations? Considerations of this nature 
are to appear in a forthcoming paper by the authors. 

(3) Is it possible to obtain conditions under which the 
linearized solutions to the field equations actually deter
mine the behavior of solutions in the full theory? In
cluded in this might be a formulation of stable properties 
in terms of Lyapunov functionals. 

I R. Penrose, in Battelle Recontres, 1967 Lectures in Mathematics and 
Physics (Benjamin, New York, 1968). 

2R. Penrose, An analysis of the Structure of Space-Time (Princeton U. 
P., Princeton, N. J., 1966). 

3E. T. Newman and R. Penrose, Proc. R. Soc. A 305, 175 (1968). 
4D. Lerner and J.R. Porter, J. Math. Phys. 15, 1413 (1974). 
sN. i,iKu~;'Ann. Math:SO, 916-(1949): 
6H. Rudberg, thesis (Uppsu1a, 1957). 
'd. E. Lerner, Comm. Math. Phy. (to be published). 



                                                                                                                                    

On the three-body linear problem with three-body interaction* 
t 

J. Wolfes 

Internationale Centre for Theoretical Physics, Trieste, Italy 
(Received 8 November 1972) 

A three-body potential is introduced for which SchrOdinger's equation of the three-body linear problem 
with additional harmonic and inverse cube forces is solved exactly. 

I. INTRODUCTION 

The three-body linear problem has been solved exactly 
for only two distinct potentialsl : 

3 

Vi ::= L a j O(X; - Xj)' (la) 
1 
3 

V2==L;[w2(x;-Xj )2+g(X;-Xj )"2]. (lb) 
1 

Its seems reasonable to assert that this list exhausts all 
possibilities of exact solution in terms of two-body 
interactions. 

Therefore, in order to extend the application of the 
three-body linear model, an exact solving three-body 
potential might be of interest since, as far as we know, 
no example with this potential is available up to date. 
The potential to be introduced has the generic form 

Vi},~==/[(X;-Xk)+(Xj-Xk)]-2, (2) 

where / is a real parameter. It represents the inter
action between the i-j couple due to the presence of the 
third k-body. The potential is reasonable since it de
pends, in a symmetric way, on the distance of each 
particle with respect to the third particle and, further
more, it tends to zero when the third body approaches 
infinity with respect to the other two. Besides, it can 
also be understood as a generalization of a two-body 
potential, since for k::= i or k::= j Eq. (2) becomes a two
body inverse square potential. 

We apply the three-body potential to two different 
problems for which Schrodinger's equation separates in 
a nontrivial way. 

The main characteristic of this model is the appear
ance of anisotropic states for distinguishable particles. 
Order and statistics are the other two features of the 
solutions to be discussed. 

In Sec. II, Schrodinger's equation of the most general 
problem is established and the symmetry properties of 
the coordinate system are discussed. In Secs. III and 
IV we solve the problem of three equal-mass linear 
bodies interacting via three-body plus harmonic and/or 
inverse cube forces. Section V is devoted to some gen
eral remarks and future outlook. 

II. SCHRODINGER'S EQUATION AND COORDINATES 

In this section we write SchrOdinger's equation for the 
general problem which includes harmonic, inverse cube, 
and three-body forces. We start with one-dimensional 
cartesian coordinates xi' and then transform the equa
tion into center-of-mass polar coordinates (r, ep) for 
which separation and exact solution is possible. 

We have then (li2/2m::= 1) 

- L: -2 + L [tw2(XI-Xj)2+2g(Xj-XJ)"2] 
( 

3 02 3 

1=1 OX; /,j=1 

+ ± 6/[(Xi-Xk)+(Xj-Xk)]-2_E) 'oJ! (X1,X2,X3) 
i.j,k=l l#j*k 

==0. (3) 
Introducing center-of-mass coordinates 

../2u== X1- x2, 

.f6v == Xl + X 2 - 2x3, (4a) 

3R == Xl + X2 + X3, 

so that 

X 2 -x3 =hl2" (i3v-u), X 3 -xl =-1.f2(i3v+u), (4b) 

we obtain for (3), after eliminating the R coordinate, 

(5) 

where E is now the energy in the c. m. frame. Finally 
we introduce the polar coordinates (r, ep): 

u = r sinep, v = r cosep, (6) 

so that 

sin 3ep = sinep(sin2 ep - 3cos2 ep)::= r-3 u(u2 
- 3v2

), (7) 

cos 3ep = cosep(cos2 ep - 3 sin2ep) = r-3 v(v2 _ 3u2 ) 

and Eq. (5) becomes 

[ 02 1 a 0
2 2 . .2 9g( . 3 )-2 

-or2-:Yar-oep2+Wr+ rSInep 

+ 9g(r cos 3ep)"2 - EJ 'oJ!( r, ep) ::=0. (8) 

This equation can be separated (:\2 is the separation 
constant): 

( 
02 9g 9/ 2) --+---+ -:\ Oep2 sin2 3ep cos2 3ep 

(9b) 

Both equations can be solved exactly. By putting/=O 
and g= 0, one obtains the well-known harmonic oscil
lator problem. The case where only /= ° was solved by 
Calogero. Ib In this paper we discuss the solutions ob
tained for g=O and/*O as well as g*O and/*O. The 
r equation is the same for aU cases mentioned above and 
its solution is well known. Only for the sake of com-
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FIG. 1. P sectors of 
order due to inverse 
cube forces. 

pleteness shall we solve it at this stage. To this end one 
makes the ansatz 

(10) 

And replacing (10) in (9a), one obtains a confluent hy
pergeometric equation for F if 

a=-2c=w, b=±X, 

then 

The physically acceptable solution is obtained by 
choosing b positive and by requiring F to be a 
(Laguerre) polynomial, that is, 

b=X >0, i(l + x) -E/4w= -n, 

so that the solution of the r equation is 

XAn(r) = r~ exp(- iwr2)L~(wr2) 

with 

E=2w(2n+X+ 1), n=O, 1, 2, •••. 

(11) 

(12) 

(13) 

Next we discuss the very important symmetry pro
perties of the coordinate system (r, cp). From (4) and 
(6) one obtains 

Xl - x2 = 12 r sincp, Xl + x2 - 2xs =.f6 r coscp. (14) 

Since the three Xi coordinates are collinear, a specific 
value of cp gives a specific ordering of all three parti
cles. It can readily be seen from (14) that if the com
plete cp circle is divided into six sectors of IT/3 each, 
then to each sector we may attach one and only one or
der of the three particles (Fig. 1). A given sector will 
be called the p sector if all angles cp = Cp, belonging to 
it can be written cp,= CPo + PlT/3 for 0".; CPo"'; 17/3. 

For identical particles, permutation operators will be 
of importance. We shall call P- an odd permutation op
erator which interchanges any two indices of an ordered 
trio. A product of any two odd permutation operators 
gives the even permutation operator P+. Besides, two 
configurations of the three particles will be called 
"identical configurations" if one can be obtained from the 
other by application of either P+ or P-. Then, if we call 
C(cp) a specific configuration associated with a given an
gle cp, all six identical configurations generated by the 
six operators P' are given by 
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pi C( cp) == C(± cp + 2n/3lT) (15) 

for n==O, 1, or 2. 

A value of cp which will be of interest in our problem 
is given by cp == (2P + 1)/6lT. At these pOints one has 312 
r sin[(2p + 1)/6lT] == v'6 r cos[(2P + 1)/61T]. That is, if the 
order (i,j, k) corresponds to the p sector, then for Cpp 

=(2p+ 1)/61T, the mid coordinate of the ordered trio 
(i,j, k) will be zero (X J == 0). Furthermore, for 
cp,«2p+ 1)/6lT, the same coordinate is positive (xJ>O) 
for even sectors, while it is negative (Xj < 0) for odd 
sectors. Now, in order to distinguish between these two 
configurations, we write for the pth configuration (P 
even): 

(ijk)=={'i(jk) if cp,< t(2p+ l)lT 

(ij)k if CPI> t(2P + 1)1T 
( 16) 

Figure 3 (Sec. lIlA) shows the 12 sectors of 1T/6 each 
for which this particular arrangement of particles holds. 
Furthermore, we call, for instance, R+ the arrangement 
i(jk) if (ijk) is an even permutation of (321); but if (ijk) 
is an odd permutation of (321), then, for instance, 
(ij)k==L-. 

Ordering plays an important role in our problem since 
inverse cube forces do not allow for interpenetration of 
particles, so that a given order will be preserved under 
the presence of these forces. On the other hand, the 
three-body force (2) will be shown to allow for inter
change of two particles while only the third conserves 
order. This particular effect will give rise to the Rand 
L configurations. 

III. HARMONIC AND THREE-BODY FORCES 

In this section we solve and discuss Schrodinger's 
equation (3) for g== O. The corresponding r equation (9a) 
has already been solved, (12); the cp equation (9b) of 
this problem reads 

( 17) 

In order to solve this problem, we introduce the vari
able z == cos2 3cp. Indeed, the inverse of this transforma
tion is not unique. But, since solutions will be found for 
the range (q - 1)/2lT ".; 3cp ".; (q + l)/2lT, for each sector so 
defined there will be only one value of cp for each value 
of z. Substitution of z into (1.7) gives 

[ d2 ( 1 ) d 1 (f X2)~ 
z(1-z)dz2 +"2 -z dz-"4 z-g J<1>(z)==O. 

If we now put <1>(z) == za H(z) and require that 

a== t[1 ± (1 + 4g)I/2], 

we obtain the following hypergeometric equation for 
H(z): 

(18) 

(19) 

[Z(l-Z)d~: +(~ +2a-Z(1+2a)) d~ +(~y -a2 ]H(Z) 

== 0; (20) 
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L 

and the complete solution is: 

R 

FIG. 2. q sectors of 
polarization due to 
three-body forces. 

H(z) =A H(a, j3;y;z) + B Zl-Y H(a + 1- y, 13 + 1- y; 2 - y;z), 

(21) 

where 

a=a-X/6, j3=a+X/6, y=t+2a. (22) 

If we now require both / cJ> /2 and cJ>cJ>' to be continuous, 
zero at the boundaries (z=O, 1,) and, in order to avoid 
collapsing of the system, g> - t (see Ref. Ib), then 
since, at z = 0, cJ>cJ>' will contain terms like A Z2a-l 

+ B Z-2
a, we should ask B = ° and 2a - 1 ;;. 0. Therefore 

one must choose the positive sign of (19) and require' 
g> - 3/16. On the other hand, at z = 1 the hypergeom
etric function behaves like (1- zy-"'·B=(I_ Z)1/2, and 
its derivative like (1 - Z)"1/2, which should be continuous. 
Therefore, we have to cut the infinite series H by re
quiring a(or 13) to be a negative integer: 

a-tX=-l, forl=0,1,2,···. (23) 

Then we obtain 

cJ>(z) = za H( -1, 1 + 2a; t + 2a;z). (24) 

And recalling the definition of Gegenbauer polynomials, 

G~n(x)=H(-n, n+s; s+t; l-x2), 

G~n+l(x)=xH(-n, n+s+l; n+t; l-x2), (25) 

we obtain as the physically acceptable solution of (17) 

cJ>.( cp) = cos2a 3 cp G~a( sin 3cp) (26) 

for 

t(q-l)7T ,,;3cp ,,;t(q+ 1)7T, otherwise zero. (27) 

We are ready now to write down the complete solution 
of this problem. But, despite the fact that the three 
particles are identical, we shall first treat them as if 
they were distinguishable, in order to get a better in
sight into the kinematics of our problem. By dOing so 
we facilitate the symmetrization procedure, which fol
lows once we treat the particles, as they are, as in
distinguishable. 

A. Distinguishable particles 

We shall show now that, for a given energy Enl' six 
degenerate 'ltn,. states are obtained from (26) if we al
low q to range from ° to 5. 
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Now, each cJ>. is different from zero only if cp. lies in 
its respective q sector given by (26a). If we compare 
these with the p sectors defined by the coordinates (Sec. 
11), we observe that in each q sector only one particle 
conserves order while the other two may permute. We 
call "free particle" the first one and "bounded pair" the 
other two. Furthermore, for q = 0, 2, and 4 the bounded 
pair stays on the right of the free particle while for q 
= 1, 3, and 5 the bounded pair stays on the left of the 
free particle. We call these Rand L states, respective
ly. The motivation for all these definitions stems from 
the fact that the boundaries of the q sectors coincide 
with those values of cp for which the midparticle of the 
trio lies either on the right (R state) or on the left (L 
state) of the center of mass of the other two (see Sec. 
II). Certainly, if the particles are distinguishable, each 
of these three R and three L states can be distinguished 
from one another (Fig. 2). That is, three distinguishable 
particles give rise to six distinguishable states, as it 
should be. But these six states cannot be generated from 
each other by permutation P, since Rand L states do 
not mix under the action of P. Therefore, there are 
still six states missing. These, as we shall see, can be 
obtained by permuting the pair of bounded particles. The 
whole effect on the wavefunction will be a phase factor 
(-I)'. In fact, let us consider the R state 3(21). From 
Fig. 3 we see that while cp stays in the lower sector 
(labelled W) the particles arrange according to 3(12). 
The identical configuration, with 1-2 permuted, be
longs to the R+ sector, cp being changed by - cpo But 
since G/a sin(- 3cp)=(-I)' G/a(sin3cp), we have 
P(I, 2)cJ>nlO = (- I)' cJ>nlD' Are these states physically dif
ferent? That is, is it possible by means of an observa
tion to tell whether we are dealing with 3(21) or 3(12)? 
Certainly not, since both configurations are equally 
probable for particles in the state 3(21). This, by the 
way, is reflected by the fact that both wavefunctions dif
fer, at most, in sign. That is, although all three parti
cles are assumed to be distinguishable, our three-body 
interaction allows one to distinguish only between states 
for which the free particle is different. This is why we 
have only three R and three L states. 

Finally we are in a condition to write down the six 
energy-degenerate wavefunctions which are solutions of 
Eq. (3) if g= 0 and the particles are distinguishable 
[see Eqs. (12) and (26)] 

'ltn,.(r, cp) =Nn,. r 6 (a+/l exp(- twr2)L~(a+/l (wr2) 

X cos2a 3CP. G~a(sin3cp.), (28) 

FIG. 3. Polarization 
and order. 
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whereq=0,1, ... ,5, n,1=0,1,2, .•• , 
(q - 1)/6n ~cp. ~(q+ 1)/6n, a= H1 + (1 + 4g)I/2], g~ --la, 
and N nl • is a normalization factor. The corresponding 
energy is 

Enl = 2w(2n + 6a + 21 + 1). (29) 

For q even, 'lrnl • is R-polarized while for q odd it is L
polarized. Bosons are described by l-even while 
fermions by l-odd wavefunctions. 

B. Indistinguishable particles 

Our next task is to symmetrize all six wavefunctions 
given by (28). To this end we make use of the permuta
tion operator P, defined by (15), obtaining 

P rfJ.(cp.) = rfJ.(± cp. + 2m/3n), (30) 

where m =0,1,2. This result is equivalent to 

p. rfJ.( cP .) = rfJ.( cp. + 2m), P- rfJ.( cP .) = (- 1) I rfJ.( cP • + 2m). 
(31) 

But the state rfJ.(cp.+2m), unlessm=O, has not been 
defined. Without changing anything in our previous cal
culations, we may now regard q as a mere parameter 
(not a "quantum number of distinguishability" as in Sec. 
mB) of the argument of only one unique function rfJ, so 
that rfJ.= rfJ., for all q and q'. This is equivalent to re
quiring Nn/O=Nn12 =NnI4 =NR and Nnll Nnls =Nnls=N L' 
But the relative phase between N Land N R cannot be de
cided on statistical grounds since permutation does not 
mix Rand L states. These two are connected by parity 
so that N L =NR=N for even parity and NL = -N R= - N 
for odd parity. 

We are then left with only one symmetrized state for 
each energy En" that is, 

'Ir nls (CPo) =Nr 6( •• 1l exp( - ~ wr 2) L~(·· n (wr2) 

5 

x~ (s)O cos2• 3(cpo + qn/3) G~a [sin 3(cpo + qn/3)], (32) 
.=0 

where the energy is given by (29), - n/6 ~ CPo ~n/6, and 
s = + 1 for even parity and (- 1) for odd parity. Bosons 
are described by 1-even and fermions by l-odd wave
functions. 

Before closing this section we wish to comment on 
polarization. 

If the simultaneous position of all three particles is 
an observable, then an R state can certainly be distin
guished from an L state. Or, what amounts to the same 
thing, if we were able to prepare a specifiC polarized 
state, then due to the Singular nature of the three-body 
interaction which forbids a particle to cross the center 
of mass of the other two, this particular state of polar
ization would certainly be conserved. Therefore one 
would have, instead of one wavefunction for each energy 
level (nl), two degenerate states, one for q-even (R 
states) and one for q-odd (L states). These states would 
not be parity eigenstates. But is the simultaneous posi
tion an observable? 

The answer to this question is no if the particles are 
indistinguishable. In fact, any observable related to 
identical particles must be permutation invariant. 2 

Therefore, for three indistinguishable particles, the 
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following are well-defined position operators: 

X=XI +X2+XS ' 

Y = I Xl - x2 1 + I Xl - xsi + I x2 - xsi ' 

z = I Xl + x2 - 2xsl + I Xl + Xs - 2x21 + I x2 + Xs - 2x 11· 

But a simultaneous measurement of X, Y, and Z does 
not allow one to infer unambiguously the value of all 
three coordinates (given a specific order). Although one 
may say that for R or L states one could infer precise 
values of Xj from the knowledge of the position observ
ables, the converse is not true. This can be seen by 
computing Z for a specific order, say (321). Then 
I Xl + Xs - 2X21 is either Xl + x2 - 2X2 or 2X2 - Xl - xS' and 
there is no way of deciding between these two values 
from the knowledge of Y and X alone. 

However, the answer to this question would be yes if 
one accepted the possibility of polarization destroying 
indistinguishability. 

IV. HARMONIC, INVERSE CUBIC AND THREE
BODY FORCES 

This time we may go straight on since the details of 
the main operations have already been given in the last 
section. We start with Eq. (9b): 

(- d~22 + Si~3CP + CO:23CP _X2) rfJ(cp) =0, (33a) 

where now 

q/2n ~ 3cp ~(q + 1)/2n. (33b) 

By transforming according to z = sin2 3cp, we obtain 

[ 
d2 (1 ) d 1 (X2 g f)] z(1-z) J • .2+ --z -+- ------ rfJ(z)=O. 

ax 2 dz 4 9 z 1-z 

(34) 

Now we try rfJ(z) = z' (1- Z)b H(z) and obtain a hypergeom
etric equation for H: 

{Z(l-Z) iz: +[(i +2a) -Z(1+2a+2b)] iz 
+[(~r -(a+ b)~} H(z)=O. 

if 

(35) 

a=·Hl+(1+4g)l/2]' b=Hl+(1+4j)1/2], (36) 

and H =H( a, (3;y;z) for 

a=a+b-X/6, (3=a+b+Aj6, y=2a+t. (37) 

Again, for the correct physical solution we must re
quire a (or (3) to be a negative integer; then H becomes 
a Jacobi polynomial P.t(z), so that for each sector de
fined by (33b) one obtains as a solution of (33a) 

rfJ(cp) = sin2• 3cp COS2b 3cp ~.-1/2,2b-l/2(COS 6cp). (38) 

Next we shall discuss the solution for distinguishable 
particles. 

A. Distinguishable particles 

The main new element which appears by addition of 



                                                                                                                                    

1424 J. Woltes: On the three·body linear problem with three·body interaction 1424 

the pair inverse square potential to the problem treated 
in Sec. II is that of order. This ordering factor is 
already present in Calogero's problem (g"* 0 ;/ = 0) and 
stems from the fact that the potential term (X j -X

J
)2 does 

not allow particle i to overcome particle j. We saw that 
the three-body potential induces polarization and as a 
consequence it conserves order between the free parti
cle and the bounded pair. By combining both potentials 
the net effect is a superposition of both order and po
larization. States like Ja(bc» and Ja(cb», which were 
indistinguishable even for distinguishable particles, now 
become different. Therefore, energy eigenstates of 
Boltzmann particles are now twelvefold degenerate. We 
may divide them into four classes: 

R+=XcjJ4q'+4' R-=X cjJ4q'+3' 

L+=X cjJ4q'+1' L-=X cjJ4q'+2' (39) 

for q' =0, 1, 2, q=4q' + s, and cjJ.= cjJ(f/Jq)' The twelve 
complete normalized degnerate wave functions of energy 
are then 

ifln1q(r, cp)=Nn1q rA exp(- twr2)L~(wr2) sin2a(3f/Jo 

+ q1T/2) COS2b(3cpo + q1T/2) P~-1/2,2b-l/2 

[cos(6cpo + q1T)], (40) 

where 0 ~ CPo ~1T/6, n, 1 = 0,1,2, .. " ;\ = 6(a + b + n. Dif
ferent values of q give polarized even or odd states 
according to (39). The energy of this state is given by 

E n,=2w(2n+ 6a+ 6b + 61 + 1). (41) 

B. Indistinguishable particles 

We must symmetrize all twelve functions given by (40). 

Again we consider the permutation operators P\ de
fined by Eq. (15). One has, as usual, 

P+(CPo+ q1T/6) = cjJ[cpq + t(q + 4m)1T] = cjJq+4m(CPq+4m) 

=P(4m) cjJ(cpq), 

P-cjJq(f/Jo + iq1T) = cjJq [(i1T - CPo) + i(q + 4m - 1)1T] 

= cjJ q+4m-l (<p q+4m-l) =P( 4m - 1) cjJ( cP .), 
(42) 

where again we have chosen cjJq=cjJq" and, at the same 
time, given a definition of qi,= (1T/6 - CPo) + P/61T. We see 
then that starting with any cf>2n (n=O, 1, 2) via P, we 
generate all R states and that starting with cjJ2n-l' we 
generate all L states in such a way that a symmetrized 
version of our problem becomes a linear superposition 
of all states given by (39). 

Having defined P(n) in (42) and recalling that sym
metrized R states are connected to L states via parity, 
we may write the indistinguishable particle solution of 
this problem in a rather compact form, that is, 

2 1 

ifI(r, cp) = 6 L: [P(4p) ±P(4p - 1)] (±)' ifI(r, CPs), (43) 
'=0,=0 

where CPq' as usual, is different from zero only if 
q/61T ~ C{J. ~ (q + 1)/61T; the ± sign between the P operators 
is due to statistics (+ for bosons and - for fermions), 
while (±)' is due to parity. In order to obtain a more 
explicit form, we notice that 

P (4p) cjJ(cp q) = N sin2a[3CPo + t( 4p + q)1T] 
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x COS2b[3cpo + t( 4p + q)1T] ~a-1/2'2H/2 cos[ 6f/Jo + (4p + q)1T] 

P (4p - 1) cjJ(qJ q) =N( - 1)1+2a+2b cos2a[3f/Jo + t( 4p + q - 1)1T] 

X sin2b [3CPo + t( 4p + q - 1)1T] ~a-l/2,2b-l/2[cos (6cpo 

+(4p+q-l)1T)]. (44) 

We now define 

cjJp,,(f/Jo) =N, sin'" [3 CPo + t(4P + S)1T] cosB[3cpo + t(4P + S)1T] 

~a-l/2'2b-l/2 [cos( 6cpo + (4P + S hr)], (45a) 

where 

a =a[I+(-)']+b[1-(-)'], 

f3 = a[ 1 - (- 1)'] + b [1 + (- 1)'], 

N. =(_1)0/2+a+bHl-<-1)'J. (45b) 

Then we can write for the complete symmetrized solu
tion of the three-body linear problem (3) which is an 
eigenstate of energy (nl) and parity (1T): 

2 ( 1 3 ) 
ifln,.(r, cp) =Xnl(r) ~ ?; (-)' s~ (±)' C/>p,. (f/Jo), (46) 

where x(r) is given by (12), C/>" is given by (45a), 
o ~ CPo ~ 1T /6. (+)' corresponds to bosons and (-). to 
fermions. Parity is positive for 1T = 0 and negative for 
11= 1. 

The corresponding energy is given by (41). 

V. FINAL REMARKS 

Although we realize the lack of realism of the linear 
model treated in this paper, the fact that an exact solu
tion for a three-body interaction is available may give 
some inSight into more realistic problems. 

Extension of this model to two or three dimensions 
should not be an easy task. BeSides, the speCific po
larization and order effect is certainly a consequence of 
linearity. 

Our intention is to extend this model to four and, if 
pOSSible, to n particles. This has been done by Calogero 
for the harmonic and inverse square potential. 3 

ACKNOWLEDGMENTS 

It is a real pleasure to acknowledge the constant advice 
and critical discussions of G. C. Ghirardi. I wish to 
thank M. de Llano and R. Avalos for helpful comments. 
I also wish to thank Professor A bdus Salam and Profes
sor P. Budini as well as the International Atomic Energy 
Agency and UNESCO for hospitality at the International 
Centre for Theoretical PhysiCS, Trieste. 

*On leave of absence from Facultad de Ciencias, Universidad 
de Chile, Santiago, Chile. 

l(a) For the I)-function potential see H. M. Nussenzweig, Proc. 
Roy Soc. (London) A 264,408 (1961). (b) For the inverse 
square and harmonic potential see F. Calogero, J. Math. 
Phys. 10, 2191 (1969). 

2L. Fonda and G. -C. Ghirardi, Symmetry Principles in Quan
tum Physics (Decker, New York, 1970). 

3F. Calogero, J. Math. Phys. 12,419 (1971). 



                                                                                                                                    

Exad solution of a one-dimensional three-body 
scaHering problem with two-body and / or three -body 
inverse-square potentials 

F. Calogero 

Istituto di Fisico, Universita di Rama, 00185 Rome, Italy 

Istituto Nazionale di Fisica Nucieare, Sezione di Roma. Rome, Italy 

C. Marchioro· 

Istituto di Matematiea. Universita di Roma, Rome, Italy 
(Received 7 March 1973) 

The exact solution is presented of the scattering problem of three equal particles interacting in 
one-dimension via two- and/or three-body inverse-square potentials. Both the classical and the 
quanta! problems are treated. It is shown that the outcome of this scattering problem is an extremely 
simple relation between initial and final momenta. the latter being univocally determtne~ by the 
former even in the quantal case. The solvability of the problem. and the Simple results Just 
mentioned. are peculiar to the equal particle case. 

1. INTRODUCTION 

Four years ago the one-dimensional quantal problem 
of three equal particles interacting pairwise via qua
dratic (''harmonical'') and inversely quadratiC ("centri
fugal") pair potentials was solved, namely all its eigen
functions were explicitly exhibited, together with the 
corresponding eigenvalues. 1 The spectrum of this prob
lem, that is, of course, discrete (in the c. m. frame) 
since the harmonical potentials prevent the particles 
from escaping to infinity, turns out to be extremely 
simple; in fact it coincides, except for a constant shift 
of all energy levels, with the spectrum of the identical
particle problem with harmonical forces only. 2 If the 
harmonical potential is instead absent, the spectrum is 
continuous, and only scattering states exist. This scat
tering problem has also been solved and the following 
surprisingly simple result has been obtained: an ingoing 
scattering configuration, characterized by (initial) 
momenta Pi' i == 1, 2, 3, goes over into a unique outgoing 
configuration, characterized by (final) momenta p;, with 
P~ = P4-i' 3 This has been proved in the quantal case, the 
proof being indeed simpler in this caSe than in the 
classical case. The same outcome obtains, of course, 
in the classical case, independently of the initial posi
tion of the incoming particles; this has been explicitly 
proved, and a simple relation has also been obtained 
between the next-to-Ieading terms in the asymptotic 
expreSSions for the positions of the particles. 3 

These remarkably Simple results are a peculiarity 
of the case with equal particles (i. e., equal masses, 
and equal strengths of all pair potentials). 4 One conjec
tures them to originate from an underlying group
theoretical structure, but this has not yet been fully 
brought to light. 5 Such a conjecture is supported by the 
observation that the simple results described thus far 
for the three body problem are also valid (with obvious 
extensions) in the N -body case. 2 

Quite recently Wolfes has shown that a similar, but 
more general, one-dimenSional 3-body model, charac
terized by quadratic ("harmonical") pair potentials, and 
by inversely quadratic ("centrifugal") pair potentials 
and/or by inversely quadratic three-body potentials 
(whose exact structure is specified below), is also 

amenable to exact solution. 6 The presence of the har
monical potential guarantees that the spectrum is purely 
discrete; and again this spectrum turns out to be 
simply related to the spectrum of the problem with 
only harmonical forces, this being certainly again a 
peculiarity of the case with equal particles. If the har
monical potential is missing the spectrum becomes con
tinuous and only scattering states exist. The quantal 
scattering problem can be solved exactly, exploiting the 
eigenfunctions explicitly given by Wolfes6 ; and again 
surprisingly simple results obtain, the property being 
preserved, that any ingoing scattering configuration, 
characterized by (h'litial) momenta PI' i = 1, 2, 3, goe s 
over into a unique outgoing configuration, characterized 
by momenta p;. If both two- and three-body potentials 
are present, the rule relating P; to Pi is simply P; - Pi; 
if only the three-body potential is present, the rule 
reads instead P; = - P2 , P; = - PH p~ = - Ps' the 3 parti
cles being labeled so that initially (namely, in the 
asymptotic past) particles 1 and 2 are closer to each 
other than to particle 3 (this property coincides with the 
requirement that in the c. m. system, the initial 
momenta of particles 1 and 2, Pl and P2' have the same 
Sign, while the momentum P3 of particle 3 has the op
pOSite sign, so that the eM condition P1 + P2 + P3 = 0 Im
plies I psi == IP1! + ! P21 = I Pi + Pzi). These results are 
proved below, first in the quantal case, and then in the 
classical case (when simple relations are also obtained 
between the next-to-Ieading terms in the asymptotic ex
preSSions for the positions of the particles). They are 
again peculiar to the equal particle problem, although 
an explicit proof of this will not be given here. 

2. THE SCATTERING PROBLEM IN THE 
QUANTAL CASE 

The quantal problem is characterized by the 
Hamiltonian 7 

Ii 2 S 02 S -2 

H= - -(2 ) 6 -;--2 +6 [g(Xj -xi +l ) m 1=1 uX j /=1 

+ 3f(X; + Xi+l - 2Xh2)"2]. (2.1) 

The coordinate x. indicates the position of the ith parti
cle, with the cyciic convention 

(2.2) 
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We always assume validity of the inequalities 

g> -1i 2 /(4m), f> -1i 2 /(4m) (2.3) 

that are required to prevent collapse. 1,6 

We shall work throughout in the c. m. frame, taking 
moreover, for simplicity, the origin of the x axis to 
coincide with the position of the center of maSs of the 
three-body system, so that 

Xl +X2+X3=::0. 

Note that in this reference frame the "three-body" 
potential in the Hamiltonian becomes simply 

3 

%J 6Xi2
• 

1=1 

(2.4) 

It is convenient to introduce the "polar" coordinates 
rand cp setting 

Xl - x 2 = v'2rsincp, 

Xl + x 2 - 2X3 = v'6r coscp • 

(2.5a) 

(2.5b) 

These equations, together with (2.4), imply the relations 

Xi +l -xi +2=v'2rsin[cp+i(27T/3)], i=I,2,3, (2.6a) 

XI+l +XI+2-2xi+3=v'6rcos(cp +i(27T/3)], i=1,2,3, 

(2.6b) 

Xi = - v'2(.r rcos[cp + i(27T /3)], i = 1, 2, 3. (2.7) 

In the polar coordinates the Hamiltonian reads (after 
elimination of the eM part)l,6 

(2.8) 

with 

1i 2 02 

M=- (2m) Ocp2 +-¥[g(Sin3CP)-2+f(cos3CP)-2]. (2.9) 

The singular nature of the interactions disconnects 
the wavefunctions (apart from a symmetry requirement 
in the case of identical particles) in different sectors of 
configuration space, corresponding to different intervals 
of values of the "angular" variable cp .1,6 To discuss the 
scattering process, we assume for Simplicity the parti
cles to be distinguishable; accordingly we consider 
wavefunctions that differ from zero only in one sector. 
If g*O andf*O, it is sufficient to restrict attention to 
the sector 0< cP < 7T /6; this may be replaced by anyone 
of the other 11 sectors, n7T /6 < cp < (n + 1)7T /6, n 
= 1, 2, .•. , 11, by inverting the orientation of the X axis 
and/or by permuting the particles. 1,6 If instead g= 0, 
f* 0, attention can be restricted to the sector - 7T /6 < cp 
< 7T /6, the other 5 sectors, (2n -1)7T /6 < cP < (2n + 1)7T /6, 
n = 1, 2, ... , 5, being obtainable in a Similar fashion. 
Finally, if g * 0, f = 0, one considers the sector ° < cP 
< 7T /3; although this case has already been solved, 3 we 
shall report here, for completeness, also the results 
appropriate to this case. 

It is important to note that Eqs. (2.6) imply that the 
sector ° < cp < 7T /3 is characterized by the property 

Xl> X 2 > X 3, (2. 10c) 

the sector - 7T /6 < cp < 7T /6 is characterized by 
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Xl > X 3, X 2 > xs, 

!XI -X2!<XI -XS, !XI -X2 ! <X2 -XS, (2. lOb) 

and the sector 0< cP < 7T /6 is characterized by the simul
taneous validity of Eqs. (2. lOb) and (2. 1Oc), implying 

(2. lOa) 

Thus the problem with g*O, f*O is investigated as
suming that the middle particle is closer to that on the 
right than to that on the left, and assigning to the parti
cles the labels 1,2,3 from right to left; the Singular 
nature of the interactions guarantees that both proper
ties are preserved throughout the motion. Note that the 
second property corresponds to the requirement that 
particle 2 stay to the right of the c. m. of the system; 
in the c. m. system defined above, this corresponds 
simply to X 2 < 0. As for the problem with g= ° and f * 0, 
it is investigated in the case where there are two parti
cles (labeled 1 and 2) to the right of the center of mass 
of the system, and one (labeled 3) to the left (in the 
c. m. sector defined above, this corresponds simply to 
the sector Xl> 0, X2 > 0, X3 < 0). Finally, the problem 
with g * 0, f =:: 0 is investigated labeling the particles in 
increaSing order from right to left. These properties 
are again preserved throughout the motion. 

The scattering problem is treated in the time-inde
pendent framework. The eigensolutions of the stationary 
Schrodinger equation, 

can be written in the separated form 

l/I=::R(r)q,(cp), 

and it is easily proved thatl,6 

R(r) == Jv(pr), 

where 

and 

Mq,(cp) = [1i 2 /(2m)]v2q,(cp). 

The explicit expressions of varel ,6 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

v==3(2l+a+b+l), l=0,1,2,···, ifg*O,f*O, 

(2. 16a) 

v=3(l+b+t), l=0,1,2,···, ifg=O,f*O, 

(2. 16b) 

v=3(l+ a+t), l=O, 1,2, ''', if g*O, f=O. 

(2. 16c) 

The corresponding eigenfunctions of Mare 

q, I(CP) = (sin3CP )a+l/2(cos3CP )b+l/2 

xp:a,b)(cos6CP)e(cp)e(1T/6} -cp] (g*O, f*O), 

(2.17a) 

q, I(CP) = (COS3cp)b+l/2C ?+1/2)(sin3CP) 

xe(cp -(7T/6)]B(7T/6) -cp] (g=O, f*O), 

(2. 17b) 
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<I> ,(cp) = (sin3CP )o+1/2C lo+1/2)(cos3CP) 

X9(cp)9[(1T/3) -cp] (g*O,I=O). 

In these equations 

a=%(l +g4mn-2)1/2, 

b = -H1 + 14mn-2)1/2, 

(2. 17c) 

(2. 18a) 

(2. 18b) 

pla,b) is a Jacobi polynomial, Clc ) is a Gegenbauer 
polynomial, and 9 is the usual step function, 9 (x) 
=%(1 +x/I xl). 

The eigenvalues v and eigenfunctions <I> of the prob
lem with g*O, 1*0, go over, as g-° resp. 1-0, into 
those eigenvalues and eigenfunctions of the problems 
with g= ° resp. 1= ° that satisfy the additional condition 
<I>(cp)=O, with <P=O resp. (,O=1T/6. 1

,6 This corresponds 
to the known relationships 

cosapla,1/2)(cos2a) = C~~:~ /2)(cosa) 

x{(2l + 1)! Ir(a +%)j[2'r(a + l + i)]}, 

(2. 19a) 

or, equivalently, 9 

sinaPlo+l/2)(cos2a) = C2~:~ /2)(sina) 

X{(-)'(2l + 1) I !r(a +%)j[2'r(a + l +i)]}. 

(2. 19b) 

Let us also recall the explicit expressions of sin3cp 
and cos3cp in terms of the original coordinates: 

sin3cp = - v'2(X1- xa)(xa - xs)(xs - x1)/il, 

cos3cp = (2/27)1/2(X1 + x2 - 2x3)(X2 - X3 - 2x1) 

X(X3 -xl -2x2)/r3. 

(2.20a) 

(2.2Ob) 

Here r is the "radial" coordinate of Eqs. (2.5), that is 
also expreSSible, in terms of the original variables, in 
the manifestly symmetrical form 

r2=-H(xl-x2)2+(X2-x3)2+(X3-Xl)2]. (2.21) 

It is now convenient to introduce the two symmetry 
operations defined by 

T(2)X1 =X2, T(2)X2=X
U 

T(2)X3=X3, 

T(3)Xi =-X4_1' i=1,2,3. 

Clearly they leave invariant the r variable, 

T(n)r=r, n=2,3, 

while they act as follows on the cp variable: 

T(2)cp = _ cp, 

T(3)cp = (1T /3) - cp, 

so that 

(2. 22a) 

(2. 22b) 

(2.23) 

(2. 24a) 

(2. 24b) 

T(2) sin3cp = - sin3cp, T(2) cos3cp = cos3cp, (2. 25a) 

T(3) sin3cp = sin3cp, T(3) cos3cp = - cos3CP. (2. 25b) 

Moreover, and most important, T(2) transforms the 
interval - 1T /6 < cp < 1T /6 into itself, while T(3) trans
forms into itself the interval 0< cp < 1T /3. Therefore T(2) 
can be applied to the angular eigenfunctions (2. 17b) of 
the problem with g= 0, 1* 0, yielding 

(2.26) 
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while T(S) can be applied to the angular eigenfunctions 
(2. 17c) of the problem with g*O, 1=0, yielding 

(2.27) 

The scattering problem is now easily treated, in 
complete analogy to the already known case. 10 The most 
general eigenfunction of the Hamiltonian (2.1) (in the 
c. m. frame) is written in the form 

~ 

If!=~ c,J/pr)<I>,(cp), (2.28) 
,=0 

where the coefficients c, are complex constants, and 
p, v and <1>, are given by Eqs. (2.14), (2.15) and (2.17). 
To discuss scattering, only the asymptotic behavior of 
this wavefunction when all particles are far apart from 
each other is needed. Then 

(2.29) 

where 

If! In = (- 21Tpr)-1/2~ c, exp[ - ipr + d 1T(V + %)]CP" (2.30) 
,=0 

and 
~ 

If! t = (- 21Tpr)-1/2 ~ c, exp[ipr - it 1T(V + t)]<I> , (2. 31a) 
ou 1=0 

= (- 21Tpr) ~ c, exp[ - ipr + it 1T(V + t)]<I> I 
,=0 

(2. 31b) 

Equation (2. 31b) differs only notationally from Eq. 
(2. 31a), with 

p=-p. (2.32) 

The wavy symbol - in Eq. (2.29) and below indicates 
asymptotic equality, i. e., equality up to corrections of 
order r-2 • 

The stationary eigenfunction describing, in the CM 
frame, the scattering situation is characterized by the 
asymptotic condition 

If!ln -cexp(i~ Ph)' (2.33) 

with 

(2. 34a) 

and 

(2. 34b) 

The restrictions (2.34) correspond to energy conser
vation [see Eqs. (2.11) and (2.14)] and to momentum 
conservation (in the c. m. frame). Additional restric
tions must be placed on the initial momenta p J' in order 
that the plane wave (2.33) describes an incoming scat
tering state in the sector under consideration for each 
problem. For completeness we now report these condi
tions in detail, even though they play no explicit role in 
the proof. We leave it to reader the verify that, in each 
case, the final momenta Pi (see below) satisfy the con
ditions characteristic of an outgoing scattering con
figuration in the same section of configuration space. 

An incoming scattering configuration is characterized 
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by the condition that the particles move freely (because 
they are still far apart from each other) and approach 
each other (so that, going backward in time, they do 
not collide). This requirement, together with the c. m. 
condition (2. 34b) and the conditions (10) characterizing, 
for each problem, the sector under consideration, im
ply the following restrictions for the initial momenta: 
in the case with gt ° and ft 0, 

pg> ° '?- P2 > P1; 

in the case with g=O, ftO, 

Pg > 0, P2 ~ 0, Pl < 0; 

in the case with gtO, f=O, 

pg > P2> Pl· 

(2. 35a) 

(2. 35b) 

(2. 35c) 

It is now easy to prove that, if the constants c 1 of Eq. 
(2.28) are chosen so that Eq. (2.30) yields (2.33), then 
from Eqs. (2.31) there also follows 

g 

l/!out=exp(-i1TA)cexp i6 P':)(i ' 
i=l r 

(2.36) 

the constant A and the final momenta Pi being given by 
the following prescriptions: in the case gtO, ftO, 

A=3(a+b+1), Pi=-Ph j=1,2,3; (2. 37a) 

in the case g= 0, f to, 
A=3(b+t), P{=-P2' P~=-Pl' p~=-pg; (2.37b) 

in the case g* 0, f = 0, 

A=3(a+t), Pj=P4-J' j=1,2,3. (2. 37c) 

The proof obtainslo inserting the explicit expression of 
II, Eqs. (2.16), in Eq. (2.31b), applying the transfor
mations T(2) resp. T(S) in the cases g=O, ftO resp. 
gt 0, f= 0 [to get rid of the factors exp(3i1Tl) = (_)1; see 
Eqs. (2.26) and (2.27) and recall that T(n) do not act on 
r, Eq. (2.23)], comparing the resulting expression with 
Eqs. (2.30) and (2.33), and finally using Eqs. (2.22) 
(unless both gt ° and ft 0) and the definition (2.32). 

The "initial" plane wave (2.33) describes, in the 
sector under consideration in each case, the (free) 
motion of particle i with momentum Pi' the conditions 
(2.35) insuring in each case that this motion corre
sponds to an initial scattering configuration, i. e., one 
where each particle gets less close to every other 
particle if time runs backward. The "final" wavefunc
tion (2.36) describes (in each case, in the same sector 
of configuration space), the (free) motion of particle i 
with momentum p;. The result just proven implies that 
the stationary eigenfunction of the Hamiltonian H, Eq. 
(2.1), that is identified by the requirement that its in
coming part coincide with Eq. (2.33), contains only the 
outgoing plane wave (2.36). Thus an initial scattering 
state, characterized by particle 1 having momentum Pl, 
particle 2 having momentum P2 and particle 3 having 
momentum Pg, can go only into the final state charac
terized by particle 1 having momentum P:, particle 2 
having momentum P~, particle 3 having momentum p~, 
the values of these momenta being related to those of 
the initial momenta by the Simple rules (2.37). The 
final momenta satisfy the equations (2.34), implied by 
energy and momentum conservation; note however that 
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these 2 equations would not be sufficient to determine 
the 3 momenta Pi. Indeed, if the 3 particles under con
sideration were not equal, to an initial ingoing scatter
ing state characterized by given momenta PI' there 
would generally correspond a continuum of 001 possible 
outgoing final states, a (continuous) function giving the 
probability density that anyone of them be the outcome 
of the scattering process. 

3. THE SCATTERING PROBLEM IN THE 
CLASSICAL CASE 

The classical problem is characterized by the 
Hamiltonian 

g g 

H = (2m)-16 p~ + 6 [g{x i -XI+l )-2 + 3f(x i + XI+l - 2XI +2)-2]. 
1=1 1=1 

(3:1) 

To exclude collapse we must now assume the conditions 

g'?-O, f'?-O. (3.2) 

We shall again investigate the 3 problems characterized 
by g> 0, f> 0, by g=O, f> 0, and by g> 0, f=O, re
stricting attention in each case to the appropriate sec
tors of configuration space, introduced in the previous 
section. 

We work again the the eM frame introduced above, 
and use the "polar" coordinates rand CP, related to the 
particle coordinates by Eqs. (2.5)-(2.7). The Hamil
tonian (3.1) is therefore written in the separated form 

H=E=p;/(2m) +B2/r2, (3.3) 

B2 = P~ /(2m) +·H g(sin3CP )-2 + f(cos3cp)"2], (3.4) 

E and B being two constants of motion. 

From these equations, and the explicit forms of Pr 

and PII , 

dr 
Pr=m dt' (3.5a) 

2d CP 
p.,=mr dt' (3.5b) 

there followsll 

r(t) = [(2E /m)(t - to)2 + B2 /E ]1/2 (3.6) 

and 

cp(t) = Harcsin {[q, (1)(t)]1/2}), (3.7) 

with 

q, (1)(t) =O! + (3 sin {y(1) + 6 arctan[(t - to) /T]}, (3.8) 

where 

O! = U1 + 9( g - f)/(2B2)], (3.9) 

(3 == [0!2 _ 9g/(2B2)]l/2 (3. lOa) 

==t{[l- 9(g+ f)/(2B2)]2 - gf(9/B2)2}, (3. lOb) 

T= (m/2)l/2(B/E). (3.11) 

Note that the definition of B2, Eq. (3.4), implies that o! 

is positive and (3 is real (by convention, positive). 

In Eq. (3.6) to is the time when r(t) assumes its 
minimal value ro=BE-l/2, while the quantity y(l) in Eq. 
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(3.8) is related to the values of cp at given times by any 
one of the following relations: 

sin3cp (to) = [a + (3 siny 0.) ]1/2, 

sin3CP(±00)=[a _(3siny(l)]1/2, 

that incidentally imply cp(+oo)=cp(_oo). 

(3. 12a) 

(3. 12b) 

These equations refer to the case with g> 0, f> 0; 
in Eq. (3.7), the positive determination of the square 
root, and the principal determination of the arcsin func
tion, are intended. It is easy to convince oneself that the 
positivity of both g and f guarantees <I> (l )(t) to be always 
positive and less then unity, implying that cp (t) is a con
tinuous smooth function of time satisfying the restric
tion 0 < cp (t) < 11 /6. However, in the limiting form that 
these equations take for g= 0, f> 0, 

<I>(1)(t) = -H1- 9f /(2B2)](1 + sin{y(l) + 6 arctan[(t - to)/T]}) 

(3.13) 

is still less than unity, but does reach the value zero; 
therefore the coordinate cp(t), Eq. (3.7), has a discon
tinuous time derivative at the time t defined by 

sin {y(l) + 6 arctan[{t - to) /T]} = - 1, (3.14) 

namely at the time t such that cp (t) = 0 or, equivalently, 
Xl (t) = x2(t). Indeed, this solution describes the motion 
that obtains if the two-body potential in the Hamiltonian 
(3. 1) is replaced by a zero-range infinitely repulsive 
pair potential, 12 whose only effect is to exchange the 
momenta of two particles whenever they encounter 
(elastic collision), thereby preventing them from over
taking each other. 

The motion in the case g= 0, f> 0 can also be evinced 
from Eqs. (3.7) and (3.13); it is sufficient to take the 
appropriate determination of the square root in Eq. 
(3.7), so that, at the time t, cp(t) changes Sign. This 
prescription is automatically taken care of by replacing 
Eqs. (3.7) and (3.8) by 

cp (t) = t arcsin[ <I> (2)(t)] (3.15) 

<I> (2)(t) = [1 - 9 f /(2B2)]1/2 

x sin {y (2) + 3 arctan[ (t - to) /T]}. (3.16) 

Here the principal determination is understood for the 
arcsin and arctan functions, T is always defined by Eq. 
(3. 11), while y (2) is now related to the values of cp at 
given times by anyone of the follOwing relations: 

sin3CP(to) = [1 - 9f /(2B2)]1/2 siny(2), 

sin3CP (± 00) = =F [1 _ 9f /(2B2) ]1/2 cosy (2), 

(3. 17a) 

(3. 17b) 

which incidentally imply cp (+ 00) = - cp (- 00). Note that now 
cp(t) is again a continuous smooth function of time, but 
it is restricted by - 11 /6 < cp (t) < 11 /6. The function r(t) is 
always given by the same formula, Eq. (3.6). 

An analogous discussion can be made for the limiting 
case g> 0, f = O. In this case the function <I> (1 )(t) is al
ways positive, but can reach the value 1. The question 
that now arises refers to the determination of the 
arcsin function in Eq. (3.7), rather than the square 
root (that must always be taken positive). If the princi
pal determination is always maintained, cp(t) gets re
flected back at the time t defined by 
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sin {y(l) + 6 arctan[(t - to)/T]} = 1, 

namely at the time lsuch that cp(t)=11/6, or, equiva
lently, x 2(t) = MXl (t) + x 3(t)] = O. On the other hand, 
the formulas relevant for the motion in the g> 0, f = 0 
case can be obtained by changing appropriately the de
termination of the arcsin function in Eq. (3.7), as t 
crosses the value t. Alternatively, and more straight
forwardly, one can use the equivalent formula 3 

cp =t arccos[<I> (3)(t)], (3.18) 

with 

<I>(3)(t)=[1-9g/(2B2»)1/2 

x sin {y(3) - 3 arctan[(t - to) /T]}, (3.19) 

using now the principal determination for both the 
arccos and arctan functions. Here T is always defined 
by Eq. (3.11), but y(3) is related to the values of cp at 
given times by 

cos3cp (to) = [1 - 9g /(2B2»)1/2 siny(3), (3.20a) 

cos3cp (± 00) = ± [1 - 9g /(2B2) ]1/2 COSy(3), (3.20b) 

implying cp (+ 00 ) = (11 /3) - cp (- 00) [note that, in this case, 
o <cp(t) < 11/3]. 

These equations, together with Eqs. (2.7), provide 
the explicit determination of the motion of each particle, 
once the constants E, B, to, and yIn), are given. These 
constants, on the other hand, are easily determined if 
the position and speed of the particles at anyone time is 
given. In a scattering process the "initial" conditions 
are aSSigned in the asymptotic past, setting 

(3.21) 

with 

(3.22) 

the last two conditions corresponding to our choice of 
reference frame, with the center of mass sitting at the 
origin of the coordinates. Then the constants E, B, and 
to are given by the explicit formulas 

3 

E = (2m)-1 "6 P~ = (p~ + P~ + P1P2)/m, (3.23) 
/=1 

B2 = P; (- 00)/(2m) + ~{g[sin3CP( - 00)]-2 + f[cos3CP( _ 00)]-2}, 

(3.24) 

to == - [a1 (2Pl + P2) + a2(2P2 + Pl) ]/(2E), (3.25) 

with 

(3.26) 

and 

(3.27) 

while the constant yIn) is given by Eqs. (3. 12b), (3. 17b), 
or (3.2Ob), depending upon which one of the 3 problems 
one is conSidering. There formulas obtain in a straight
forward manner from the definitions (3.3), (3.4), (3.5), 
and (2.5), and provide, together with Eqs. (2.7), (3.6), 
and (3.7) or (3.15) or (3.18), the complete explicit 
solutions of our problems. It should, of course, be re
membered that the momenta are also assumed to satisfy 
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CMI1.31 !. 

;, -9 

.

/// 

/~", , // 

,,/'~/./'-

FIG. 1. The classical motion forthe three-body problem dis
cussed in this paper. The continuous lines indicate the position 
of the three particles, and of the center of mass of the two ex
ternal ones, as a function of time, for g= /= 5 (with m = 1, and 
initial (t- - "') conditions PI = - 2, P2 = - 1, Ps = 3, al = 2, a2 = 
-2.5, a3=0.5). Asg-O',/-O+, the motion, with the same 
initial conditions, degenerates into the shown sequence of 
straight segments, yielding finally the same asymptotic 
outcome. 

the restrictions discussed in the previous section, Eqs. 
(2.35), that are required in each case in order that in 
each case the initial configuration belong to the ap
propriate sector of configuration space, and describe in 
that sector an incoming scattering state, with all the 
particles approaching each other. 

In the asymptotic future the particles move again 
freely (but now away from each other): 

xj(t) - (p~/m)t+a;+O(rl), i=1,2,3. (3.28) 
t .. + oo 

It is easy to verify that the quantities P; and a; are 
given by the following simple rules: if g> ° andf> 0, 

P;=-P j , i=1,2,3, (3. 29a) 

a/= -aj> i= 1, 2, 3; (3. 29b) 

if g=O, f> 0, 

P/
1 = -P2, P~= -Pu P~= - Ps, (3.30a) 

a'l = -a2 , a~= -au a~= -as; (3.30b) 

if g> 0, f=O, 

P; =P4-P i=1,2,3, (3. 31a) 

a; = a4-/, i=1,2,3. (3. 31b) 

In fact, these follow rather directly from the equation 
of motions, even without using the explicit expressions 
(3.23)-(3.27) of the constants that appear in them. 

The staggering Simplicity of this result is clearly a 
peculiarity of the equal particle case; if the masses of 
the particles were unequal, or the coupling constants of 
the potentials for different pairs and triplets of parti
cles were different, then both P; and a; would depend on 
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all the p/s and the a/s, and moreover on the values of 
the masses and of the coupling constants. Of course, 
even in the equal-particle case, the actual motion does 
depend on these parameters; it is only the asymptotic 
free motion, Eq. (3.28), that is independent of (almost 
all) the parameters, being completely described by the 
simple rules of Eqs. (3.29)-(3.31). This point is 
illustrated in Fig. 1, that displays the actual motion in 
one specific case, for g> ° andf> 0. The motion that 
would result for different values of g and f (but with the 
same initial, and therefore final, asymptotics), can be 
easily inferred from the case displayed, noting that an 
increase in g and f, implying more repulsion between 
the particles, has the effect of separating the different 
trajectories, while on the contrary for very small 
(positive) values of g and f the distance between adjacent 
particles, and between each particle and the center of 
mass of the other two, can become quite small. As g 
and f tend to zero (through positive values), the motion 
degenerates into a sequence of free trajectories, 
separated by sharp collisions between adjacent particles 
(those on the rhs, in the sector on which we have 
focused in this paper; see Fig. 1) and between the mid
dle particle and the center of mass of the other two (or, 
equivalently, the center of mass of the whole system). 
In the first type of collision, the two particles involved 
exchange their momenta; in the second type of colliSion, 
the middle particle reverses its momentum, and the 
other two exchange and reverse their momenta. The 
corresponding motion is also reported in Fig. 1. Note 
that, if the initial momenta of the particles are Pu P2' 
and Ps, in the limiting motion corresponding to g- Q+, 

f - 0', no other values of the momenta appear besides 
these 3 and the three values - Pu - P2' and - P3 • 13 
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Wave propagation in a random medium: A complete set of the 
moment equations with different wavenumbers 
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Propagation of waves in a random medium is studied under the "quasioptics" and the "Markov 
random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the 
characteristic functional of the random wave field is derived. A complete set of the moment 
equations with different transverse coordinates and different wavenumbers is then obtained from the 
Fokker-Planck equation of the characteristic functional. The applications of our results to the pulse 
smearing of the pulsar signal and the frequency correlation function of the wave intensity in 
interstellar scintillation are briefly discussed. 

I. INTRODUCTION 

Phenomena such as the twinkling of starlight and the 
ionospheric, interplanetary, and interstellar radio wave 
scintillations involve the propagation of an electromag
netic wave in a random medium. A complete statistical 
description of the wave field requires the solution of all 
moments of the wave field with different positions and 
different wavenumbers. 

A complete set of the moment equations of the wave 
field with different transverse coordinates but the same 
wavenumbers has been derived under the "quasioptics" 
and the "Markov random process" approximations, 1,2 

which can be applied to both weak and strong scatterings. 
However, such a set of the moment equations with the 
same wavenumbers is not sufficient to describe all the 
statistical properties of the random wave field. Some ob
served quantities in interstellar scintillations, such as 
the pulse smearing and the correlation function of the 
intensity fluctuation with different wavenumbers, 3-5 need 
the solution of the moment equations with different wave
numbers. It is the purpose of this paper to derive a com
plete set of the moment equations with different trans
verse positions and different wavenumbers under the 
quasioptics and the Markov random process approxima
tions. The results reduce to those of Tatarskii1 ,2 in the 
case of the same wavenumbers. It is noted that the meth
od of the derivation used here is new, and simpler than 
that by Tatarskii. 1,2 

It is the idea of Hopf6 to introduce the "characteristic 
functional" as an alternative way to describe the com
plete statistical properties of a random field. In Sec. IT, 
we will derive a Fokker-Planck equation for the charac
teristic functional of the random electromagnetic field. 
In Sec. m, a complete set of the moment equations will 
be derived from the Fokker-Planck equation satisfied 
by the characteristic functional. Some applications of the 
results will be briefly discussed in Sec. IV. 

II. FOKKER-PLANCK EQUATION FOR THE 
CHARACTERISTIC FUNCTIONAL OF THE WAVE 
FIELD 

We consider the propagation of a monochromatic wave 
Ew(r, t) obeying the scalar wave equation 

(1) 

where 

(2) 

<I> )r) may be regarded as a Fourier component in time 
of a general wavefunction. Here (W/21T) is the frequency 
of the monochromatic wave, c is the speed of light, and 
Ew(r) is the refractive index of the medium in which the 
wave propagates. 

The refractive index Ew(r) is a random function and 
depends on both the position r and the wave frequency w. 
As an example, we will consider in this paper the pro
pagation of the high frequency waves with w» wI>' the 
plasma frequency of the medium, in the plasma medium. 
This applies to the propagation of the radio waves in the 
ionosphere, the interplanetary space, or the interstellar 
medium. If Ne is the electron denSity, then we have 

E,.,(r) = 1 - w;l w2 (3) 

and 

W~==41TNee2/m, (4) 

where m is the mass and e is the charge of an electron, 

Now Ne and Ew(r) fluctuate irregularly. Let ( ) denote 
an average over an ensemble of propagation volumes. 
Then define 

(Ew(r» == Ewo(r), 

Ne(r) =:: (Ne(r» + oNe(r), 

,B(r) = - 41Te2oNe(r)/mc2. 

We have 

V 2 <I> w(r) + 1?[ 1 + ,B(r)/ lr]<I> w(r) =:: 0, (5) 

where now ,B(r) is a wave-frequency independent random 
variable with zero mean and where the wavenumber 
k = (wi c)..rE;;. 

It is useful to define 

<I> w(r) == u(k, r )elk~, (6) 

from which we obtain 

8u(k r) (82 82 82
\ 

2ik--ai- + \P + a? + ay.Ju(k, r) + ,B(r)u(k, r) =0. (7) 

Let 

r=(z,p), p=(x,y), and s=(p,k). 

In order to proceed further, we will make two assump
tions about the wave equation and the properties of the 
medium. 
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First, we assume that the term a2u/az2 in Eq. (7) can 
be neglected. This is called the "quasioptics" approxi
mation or "parabolic" approximation. Physically this 
assumption is equivalent to neglect the reflected wave 
since the equation has been reduced to one with a first
order derivative in z from the one with a second-order 
derivative. Thus we have 

a~ u(z, p, k) + 2~k V;u(z, p, k) + 2~k (3(z, p)u(z, p, k) = 0, (8) 

where 

V!= a2/ax2 + a2/ay2. 
Second, we assume that (3(z, p) is delta-correlated in 

z direction. This is called the Markov random process 
approximation. As we can see later, this is equivalent 
to assume that the correlation scale of (3(z, p) in z direc
tion is much less than the correlation scale of the wave 
field u in z direction. We then have 

({3(z, p){3(Z', pI» = 2li(z - z I)A(p - pI) (9a) 

and 

A(p - pI) = i: ({3(z, p){3(Z', pI» dz ' • (9b) 

Note that the z dependence of A(p) is not explicitly ex
pressed for convenience. 

The validity of the above two assumptions has been 
discussed. 2,7 We will only note that the "quasioptics" 
approximation and the "Markov" approximation can be 
applied in the strong scattering cases. 

It is known that the probability distribution function at 
time t of a random variable x(t) that satisfies a differen
tial equation of the first order in time with a delta-cor
related external random force satisfies the Fokker
Planck equation. In our case, z plays the role of time. 
However, for a fixed value of z, the random field 
u(z, p, k) does not have just a discrete value but has an 
infinite number of values and is a function of p and k. It 
is the idea of Hopf'l to introduce a characteristic func
tional ~ to describe the statistical properties of a ran
dom field. One defines the characteristic functional as 

>I1(z, v, v*) = (exp(iR~» 

= (exp{i f f [u(z, p, k)v(p, k) 

+u*(z, p, k)v*(p, k)] ~p dk}), (10) 

where * denotes complex conjugate and the range of in
tegration is over all the allowed values of p and k. Here 
v and v* are treated as independent functions of p and k. 

It is the purpose of this section to derive a Fokker
Planck equation for the characteristic functional >11 de
fined above. TatarskiP derived an equation for the cha
racteristic functional with constant wavenumber k. It is 
noted that we treat in Eq. (10) the wavenumber k as a 
variable. 

USing S = (p, k), we write Eq. (10) as 

>I1(z, v, v*) = (exp{i f [u(z, s)v(s) + u* (z, s)v*(s)] ds}). (10 /) 

We differentiate Eq, (10) with respect to z and obtain 
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by Eq. (8) 

:z >I1(z, v, v*) 

=(exp(iR~)i f [(;i~)[ V!u(z, s) + (3(z, p)u(z, s)]v(s) 

+ (2~)[V!u*(z,S)+{3(z'P)u*(Z,s)]v*(s)J dS). (11) 

First we calculate the terms (exp(iR.)V;u(z, s» and 
(exp(iRII)V;u*(z, s» in Eq. (11). From Eq. (10), we have 

and 

li>l1(z, v, v*) i(u(z, s)exp(iR
II
» 

dv{s) 

li>l1(z, v, v*) i(u* (z, s) exp(iR.». 
liv*(s) 

(12a) 

(12b) 

The operators li/liv(s) and li/liv*(s) denote functional de
rivatives. 6,8 Operating V; on Eqs. (12a) and (12b), we 
have respectively 

(V2( ) (·R»_.!....,2 li>l1(Z'V,v*) 
pU z, s exp Z II - i v P liv(s) (13a) 

and 

(V2 * ( ) ('R » _ .!....,2 Ii~(z, v, v*) 
pU z, s exp Z II - i Y p liv*(s) (13b) 

Next we consider the other terms in Eq. (11), namely, 
(exp(iR II){3(z, p)u(z, s» and (exp(iR.){3(z, p)u*(z, s». We 
define 

g(v, v*, z, s) = (exp(iR
II
){3(z, p». (14) 

Expand exp(iR
II

) in power series as follows: 

exp(iR.) 

'" 1 
=2:; ~i f[u(z, s)v(s) + u*(z, s)v*(s)] ds}m. (15) 

mlllom. 

Then we have 

x [f (U2V 2 + u:v:) ds2 ] ... [j (urnI'm + u!v:,) ds m]{3(z, p», 

(16) 

where we define Sl = (Pi' k l ), VI = v(Sj), u l =u(z, Sj), and 
etc. for i = 1, 2, 3, .... In the expansion of Eq. (16), the 
existence of moments of all orders is assumed. 

Consider now the term in Eq. (16) like (UflU~2 ... u~m(3), 
where U~I denotes either ul or ut. From Eq. (8), we 
may write u(z, s) as 

. (at 
u(z,s)=u(O,s)+i}o k 

x [ V;U(z I, s) + (3(z I , p )u(z I , s ) ] dz I • (17) 

Note that u(z, s) does not depend on (3(Z', s) for Zl > z. 
Let t:..z be an increment in z, which is larger than the 
correlation scale of (3(z, p) in z direction, and write 

ii.' i u(z, s) = u(z - t:..z, s) + "2 k 
z-Az 

X[V;U(Z', s) +(3(ZI,p)U(Z', s)] dz ' , (18) 
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where u(z - .6.z, s) has no correlation with (3(z, pl. Sup
pose .6.z is small, and expand u(z, s) as 

u(z, s) =u(z - .6.z, s) + f (~z)v;u(Z - .6.z, s) 

+f u(z ~.6.Z's) L:/(z',p)dz'+ O(.6.2z). (19) 

Under the Markov approximation, the correlation scale 
of (3(z, p) in z direction is zero. Therefore, we let .6.z 
- O. We note that 

lim u(z -.6.z, s)=u(z, s) 
11..-0 

and 

«(3(z, p') J.:II.. (3(z', p) dz') =A(p - p'). 

For higher moments such as 

T j =«(3(z,p) J.:11..(3(zu Pl) dz l '" 

(20) 

(21a) 

we will assume as in the derivation of ordinary Fokker
Planck equation9 

lim Tj=O, i~2. 
11..-0 

(21b) 

This assumption can be satisfied if the random function 
(3(z, p) has a Gaussian, or normal statistics. However, 
the assumption made in (21b) is more general and does 
not require the Gaussian statistics of (3(z,p) in general. 

It follows directly from Eqs. (16), (19), (20), (21a), 
and (21b) that, as .6.z- 0, 

and, in general, 

«UlVl + utvt) ".(umvm + u!.v!){3(z, p» 

=tA(P-Pi)(2~ )«~Vl +utvt) .. • 
i_l i 

(22) 

by noting that (u(z - .6.z, s){3(z, p'»= o. Other than the as
sumption made in (21b), Eq. (22) is exact under the 
della-correlation assumption. But we see that really we 
only require the existence of an intermediate scale .6.z 
which is larger than the coherence scale of (3(z, p) but 
smaller than the scale of variation of u such that 
u(z - .6.z, s) =u(z, s). The existence of the intermediate 
scale and Eq. (21) are the essence of the Fokker-Planck 
equation. 

Substituting Eq. (22) into (16) and noting that all the 
s/ s are dummy variables, we then have 

g(v,v*,z,s) 
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X (U",..l v".. 1 +U!._lV!_l)(UmVm -u!.V~»dSl"· ds m• (23) 

We can also write Eq. (23) as 

g(v, 1'*, Z, s) 

.. i"..l (1)/ /1 =.0 ~ - - 0.. -A(p - p')«u'v' - u*'v*') 
m.l (m - 1,! 2 k' 

where s'=(p',k'), u'=u(z,s'), and v' = v(s'). 

Setting m - 1 = n, we have 

g(v, 1'*, Z, s) 

=t (i)n (-1) f ... jki , A(p - p')«u'v' - u*'v*') 
n_O nl 2 

X (UlVl +utvt) ... (unvn +u~v~» ds'ds l ... dsn• 

From Eq. (25) it is easy to show 

(24) 

(25) 

g(v,v*,z,s)= (~1) f d:: A(p-p')[v(s')(u(z,s')exp(iR.» 

- v*(s')(u*(z, s')exp(iR.»]. (25') 

By Eqs. (12a) and (12b), we write gas 

g(v, 1'*, Z, s) 

= (f) f d:: A(p - p') 0(s') o~~') - v*(s,) ov~~s'))' 
(26) 

Define the operator M(s) as 

A 0 0 
M(s) = v(s) ov(s) - v*(s) ov*(s)- (27) 

We then have 

(i) jdS' A g(v,II*,z,s)= '2 "'k'A(p-p')M(s')ll1(z,v,v*). (28) 

We also note that 

({3( ) ( ) ( 'R» 1 og(v,v*,z,s) 
Z,P u z,s exp t • =7 ov(s) (29a) 

and 

({3( ) *( ) ('R» 1 og(v, 1'* , z, s) 
z,pu z,s expt • =7 ov*(s) • (29b) 

By Eqs. (11), (13a), (13b), (28), (29a), and (29b), we 
obtain 

oll1(z, v, 1'*) 
oz (f) f ~s (v(s)V! o~fs) -v*(s)V! o:~s») 

1 If dsds' A A - 4' ---;;FA(p - p')M(s)M(s')ll1. (30) 

This is the Fokker-Planck equation for the characteris
tic functional 111 of the random electromagnetic field 
u(z, p, k). Since the characteristic functional is the 
Fourier transform of the probability functional, Eq. (30) 
is in fact the Fourier transform of the Fokker -Planck 
equation. Our technique used here can also be applied to 
the derivation of the Fokker-Planck equation for the or
dinary characteristic function of a random function x(t). 
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III. MOMENT EQUATIONS 

We want to derive a complete set of moment equations 
in this section. First, we expand >!F(z, v, v*) as a power 
series 

00 00 im+n (/ )m 
lJ!(z, v, v*) =~O!?O m In! u(z, s)v(z, s) ds 

x (/u*(Z,S')v*(Z,S')dS)" 

00 00 i711+n 
=.0 .0 -'-I Km nez, v, v*), 

m=O .=0 m.n . 
(31) 

where 

K (z v v*) = f ... f r (z S ... S . s' ... s') 
m," , , m,n '1' 'm' l' '" 

XV1"·vmvt'· .. v~'dsl .. ·dsmds{·"ds~ 

and 

(32) 

r m. is the m-nth moment of the random field u(z, s). 
Th~ object of this section is to derive a differential equa
tion satisfied by r m."' 

We note that, for any function f(s) of s, we have 

f f(s)v(s) ov~s) Km."(z, v, v*) ds 

=/ ... jf;r (z s ... s ·S' ... S')I£(S) 
7ft, n " 'm' l' 'n '.J i 

j_l 

(33a) 

and 

/1(S)v*(s) ov~(s) Km."(z, v, v*) ds 

= f· .. f t r (z S ... S • s' ... s')Ij(s') m,n '1 m' 1 n i 
l:l 

From (33a) and (33b) we obtain 

- - --A(p -p')M(s)M(s')K (z v v*) 1 j f dsds' ~ A 

4 kk' m." , , 

=_! / ... j(23 t A(PI -PI) 
4 1=1 j_l klk I 

XdS1 ... dsmds{ .. • ds~. 

We also note that 

f oK 
v(s)V2

...;..;:..;;.m.( ) ds 
p OV s 
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(33b) 

(34) 

=/ ... j(V2 +V2 + ... +V2)r v "'V v*''''v*' 1 2 m m,n 1 m 1 n 

X dS1 ... dsmds{'" ds~ 

and 

J *( ) 2 oKm " d v SV pov*(;) s 

(35a) 

= f ... f (V,2 + V,2 + ... + V,2)r V .. • v V*"" v*, 1 2 n m,n 1 7ft 1 n 

X dS1 ... dsmds{ ... ds~, 

where V~ = V!J and V j2 = V~ 0 

By Eqs. (31), (34), (35a), and (35b), we can write 
Eq. (30) as 

(35b) 

-t t (A(PI - pj) +A(PI -PI» + t t A(pj - p~») r 1 V1 ... VJ'*"" v*'ds1 ... ds ds"" ds' =0 
l:l J=l klkj l:l J.l kjkj m'"J 1" m 1 " • 

(36) 

Since v(s) and v*(s) are arbitrarily defined, the quantity 
inside the bracket in Eq. (36) must be zero. We have 
then the following differential equation for the moment 
function r m.": 

ar .:..:..m.zL(z s .. ·s s, .. ·s') az '1 m. 1 " 

=_ .....!.+ ••• +.....III. __ 1 _ ... _-A- r i [V2 V2 V,2 V,2] 
2 kl km k{ k~ m." 

n " A(pj - pP) 
+.0.0 k'k' rm•n • 

1=1 J:l 1 J 
(37) 
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It is noted that we can also derive the moment equa
tion (37) directly from the wave equation (8), using the 
same technique in obtaining Eq. (22). Equation (37) thus 
gives us a complete set of the moment equations of the 
random wave field with different transverse coordinates 
and different wavenumbers. 

IV. APPLICATIONS 

First we note that we have derived a complete set of 
the moment equations with different transverse coordi
nates and different wavenumbers for the high-frequency 
waves propagating in a plasma medium. However, we 
can easily extend the argument to the other cases when 
the index of refraction Ew(r) has a different frequency 
dependence. 
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Next we consider some applications. 

A. Identical wavenumbers 

When all the wavenumbers are identical, Eq. (37) 
becomes 

ar -..!!!L!!.(z P ••• P p"" pI) ilz '1 m' 1 n 

i 2 2 2) 1 - - (v2 + ••. + V - V I _ ••• - V I r _ .....,... - 2k 1 m 1 n m,n 4k' 

-~ t [A(pj -pi) +A(pj -Pj)] 
j.1 izl 

+ t t A(pj - pj)\ r m,n' 
j.1 i=l 'J 

(38) 

which is identical to that obtained by Tatarskii. 2 How
ever, the derivation by Tatarskii requires that the re
fraction index fluctuations possess Gaussian statistics 
while we do not require the assumption of Gaussian sta
tistics in our derivation in general. 

B. rl,1 (Z,SI,S2) 

When m=l, and n=l, Eq. (37) gives 

ar1 ,1 (z,P1,kll P2,k2) 
az 

i (V2 V2) 1 [(1 1 ) = - ....!. - --! r 1 ,1 - - ":T +":T A(O) 
2k1 k2 4 Ri Il2 

(39) 

where r 1 ,1 (z, PlI kll P2' k2) = ( u(z, Pll k1)u*(z, P2' k2». 
Equation (39) can be used to calculate the mean inten

sity profile (I(r, t» at position r. Consider the random 
wave observed by a detector with a bandwidth function 
fB(k). Then we have the total observed wave amplitude 
h(z, p, t) at position z, P and time t 

h(z, p, t) = I: u(z, p, k)fB (k) exp{i[kz - ~k)t]} dk. (40) 

The average intensity profile is then 

(I(r. t» = (h(z, p, t)h*(z, p, t)) 

= f 1: (u(z, p, k1)u*(z, p, k2»fB (k1)fB (k2) 

xexp{i[klz -w(kl)t]}exp{ -i[k2z -w(k2)t]}dk1dk2 • 

(41) 

Thus r 1 1 is related to the average intensity profile 
(I(r, t» by Eq. (41). Equations (39) and (41) have been 
applied to calculate the pulse profile of pulsar in inter
stellar scintillation. The details will be given in a later 
paper. 
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C. r 2 ,2 

When m =2, and n=2, Eq, (39) becomes 

(42) 

where 

r 2,2(Z, 8 11 8 2, 8 3, 84) = (u(z, 81)U(Z, 82)U*(Z, 83)U*(Z, 84», 
(43) 

If one sets 8 3 = 8 11 8 4 = 8 2, and Pl = P2' then 

r 2,2(Z, 8 11 8 2, 8 3, 8 4) 

= (I u(z, PlI k1) 121 u(z, Pll k2) 12) = (I(z, PlI k1), 

I(z, Pll k2» = PI(k1 - k2). (44) 

Here 1 is the intensity and PI is the correlation function 
of intensity at different frequencies. Thus r 2 ,2 gives in 
this special case the intenSity correlation function 
PI(k1 - k2) at a given observation point with different 
wavenumbers. The intensity correlation function has 
been measured in interstellar scintillations, 3-5,10 and 
Eq. (42) provides a theoretical base of interpretation. 
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We establish some properties of automorphisms of real Lie algebras, which in particular allow us to 
construct the derivation algebra of a Lie algebra from the derivations of its radical. We apply this 
construction to some familiar kinematical algebras. 

I. INTRODUCTION 

Up to now the notion of a group of automorphisms of 
a finite dimensional Lie algebra has practically been 
used mainly in the simple case of Abelian Lie algebras 
for which the group of automorphisms is Gl(n,IR), where 
n is the dimension of the real algebra. In the non
Abelian case, two physically interesting examples are 
well known with the groups of automorphisms of the 
Poincare1 and the GalileF algebras. 

Let us add that the knowledge of the Lie algebra of 
automorphisms, also called the derivation algebra, 3 
has been useful to classify, up to a conjugation, the sub
algebras of a given Lie algebra,4 and had led to build 
a theorem on the derivations of the semidirect sum of 
two Lie algebras ~ 0 L, where ~ is Abelian and L 
semi-simple, provided that the decomposition of ~ into 
invariant subspaces under L is unique. 

In this paper it is proposed to extend the above theo
rem to the case of the semidirect sum A =1<. 0 L, where 

I<. is the radical, i.e., the maximal solvable Lie alge
bra inA, and L plays the role of a Levi's factor. From 
Levi's theorem3 any Lie algebra admits such a decom
position and it will be shown how it is possible to con
struct the derivations of I<. 0 L using some well-defined 
derivations of the radical, the action of these deriva
tions being extended to the whole algebra. 

To find out the group of derivations of a Lie algebra, 
we could have used a pure cohomological approach 
based on the structural theorem between cohomology 
groups of G. Hochschild and J. P. Serre (Theorem 13 
in Ref. 5). In particular this theorem shows that the 
first cohomology group H 1 ( A, A), namely the quotient 
group of derivations by inner derivations, is essential
ly made of some linear maps defined in the radical into 
the whole algebraA considered as a vector space A. 
But these maps cannot in general be easily found. More
over it is clear that the knowledge of the first cohomol
ogy group does not give immediately neither the struc
ture of the derivation algebra, nor the action of this 
algebra on A . 

This paper is organized as follows: 

Section II is devoted to some definitions and useful 
lemmas we need for the following sections. 

The two following sections deal with some properties 
of A in connection with the automorphisms 0 In Sec, III 
it is shown that the radical I<. is stable for all automor
phisms of the whole algebra A. This result is essential 
and leads to the study of the derivations of A through 
the derivations of 1<.. The Levi's factor does not possess 
a so strong property. However L decomposes as 

L I (!) LII with L I acting "effectively" on R and L II com
muting with 1<., and it can be proved (Sec. IV) that the 
algebras AI=R oLI and LII are both stable for the con
nected part Aut°(;'i) of the automorphisms of A 0 

Section V emphasizes the role played by a particular 
subgroup Ro of the group of the inner automorphisms of 
A I' It follows a fundamental relationship between 
Aue(I/I) and a subgroup G of Aue(I<.). In Sec. VI this 
subgroup G is fully characterized which allows to carry 
out the construction of the derivation algebra. 

To illustrate the practical applications of this theo
rem, some relevant phYSical examples involving kine
matical algebras are studied in Sec. VII. 

In another paper6 it has been shown how the notion of 
derivation algebra can be used to increase an explicitly 
time-dependent invariance algebra of a given quantum 
mechanical system. 

II. PRELIMINARY PROPERTIES 

All along this paper we are concerned with real Lie 
algebras. 

(A) Definition: Let A be a finite dimensional Lie 
algebra and a an element of A; we call ideal relative 
to a the subalgebra 911 (a) constructed as follows: let us 
consider the subalgebra [A!) obtained by closing under 
the Lie product the vector subspace A! defined as: 

A! ={llo /3 a' E A such that [a', a) = llo} = [A, a) 

if adA,a], 

A! ={[A, a]}Ei"{a} with {a}={~a/ ~EIR} 

if aEt [A, a). 

Then let us form [A, [A!]J; two cases may appear: 

(i) [A, [A!]Jc [A!J and [A!J furnishes the ideal relative 
to a. 

(ii) [A, [A!]J¢[A!J then the subalgebra [A:J can be con
structed on the vector subspace A: deduced from the 
set: 

{[A:-l]} U {[ A , [A:-l ]]} 

and the iterative procedure will be stopped at the first 
stage n for which 

[A, [A~]Jc [A~J, 
then 911 (a) must be identified with [A~J. 

In the case of a simple algebra the following property 
can be deduced. 

Lemma: Let 5 be a simple algebra; then 9 (s)=5 for 
any sE5. 
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Indeed the ideal 95 (5) being different from zero by 
construction, can only be, in a simple algebra, the 
whole algebra. 

(B) Lemma: Let L be a semisimple algebra; then 
[L , l] * ° for any 1 E L . 

The proof of this property is obvious for a simple 
algebra S, since the elements 5 E S such that [5, S] = 0 
would form an ideal in S. We can deduce easily the 
same property for L semisimple owing to the decom
position of any semisimple algebra into a direct sum 
of simple subalgebras. 

(C) LetA be a Lie algebra defined as a semidirect 
sum R. oL and B a proper subalgebra of A (B *0). We 
can define4 : 

LIl =-LnB and R.A =R.nB. 

It can be easily seen that L Rand R. Rare subalgebras 
of B: 

[L B ,L B ] C L B' [R. B ,R. B ] C R. B 

and moreover 

[L B ,R. B ] C R. A 

which prove that 

R.B oL B c.B. 
If R. B 0 L B C B, we denote by /f1 R a complementary sub
space of R. B + L B in B : 

B =-R. R + L B +/f1 B • 

One can be easily convinced that any nonzero element 
mJ of /f1 B can be written in an unique way as: 

mj==rJ+1J, 

with 

rJER., rj¢R. g , rJ*O, 

lj E L, lj ¢ L R' lJ '" 0. 

Let us denote by R.: B (respectively, L'A) the subspace 
spanned by the r/s(resp. l/s), then the following prop
erty can be shown: 

[L B + L ~ , L B + I'B ] c. L B + L 'A' 

i. e., that L R + L ~ is a subalgebra of B. 
(D) In the algebraA written as R. oL ~ the Levi's 

factor L being semisimple can be decomposed into a 
direct sum of simple subalgebras: 

L=-~ LI • 
1=1 

It is useful to remark that this sum can be settled as: 

with L I' i = 1 , ... ,k acting effectively on R., i. e., such 
that IL I ,R. ] * ° and L J' j = k + 1, ... ,n commuting with 
R., i.e., such that [LJ,R.]=O. 

It is worth noticing the following property: 

Lemma: If L simple acts effectively on R., then 
[z,R]*O for each lEL. 
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Proof: Let us consider the set 

this set is an ideal in L since for any 1 E L, 10 E C, the 
Jacobi's identity implies [[lo,l],r]==O for each rER.. 
By hypothesis C is different from L and thus can only 
be zero. QED 

(E) We recall here a property given in Ref. 7. 

Lemma: Let (7 be a representation of a semisimple 
Lie algebra L in a finite dimensional vector space V. 
If W is an invariant subspace of V such that dim V 
== dim W + 1 and if (7(1) V c. W for all 1 E L, then there 
exists a vector v E V, v ri W such that (7(1) v=-O for all 
lE L. 

III. STABILITY OF THE RADICAL 

Let A be a real finite dimensional Lie algebra which 
can be written following the Levi's decomposition as the 
semidirect sum R. 0 L corresponding to a (nontrivial) 
homomorphism from L into I)(R.) the derivation algebra 
of R. , where R. is the radical, i. e., the maximal sol v
able ideal and L a Levi's factor (semisimple subalgebra 
by definition) •. Then: 

Theorem 1: R. is stable for each automorphism of A, 
i. e., is a characteristic ideal of A. 

Assume that there exists an automorphism (J of A and 
an element r of R. such that 

(J(r) == 1 + r' with 1 E L, 1 * 0, and r' E R. , (1) 

R being an ideal of II [A ,R. ]c. R. and we have 
[(7(A), (7(m] c. (7(m. But (7(A) = A, by definition, and 
it follows that 

[L, (7(R. )] c. a(R.), 

in particular, 

[L, 1 + r'] c. (7(m. 

Obviously, L being semisimple can be decomposed 
into a direct sum of simple algebras L I: 

L ==£ LI • 
1=1 

Then the element 1 used in (1) can be decomposed as 

1 == t 1; with 1; ELI' 
i=1 

(2) 

Let us choose in this sum lJ E L J' lj * 0, which is possi
ble since 1*0. 

The relation (2) ensures that 

[ L l' I + r'] c. a(m. 

Let us remark that 

[L j , 1 + r'] == [L J' 1, + r']. 

Then, using the lemmas A and B, it is not difficult to 
deduce that JA (l+r'), which is included in a(R.), con
tains a subalgebra B 

B==L +/f1 +R. 
B R B 
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such that 

LIJ + L ~ = fh/lJ )= L,. 

Therefore B is not solvable. But R solvable implies 
O'(R) solvable and then O'(R) contains only solvable sub
algebras, which contradicts the above result. So an 
element z* 0 cannot appear in (1) and for any automor
phism 0' of 1/ we have O'(R) cR. Since O'(R) and R have 
the same dimension, it follows that R is stable under 
all the automorphisms of 1/, hence is a characteristic 
subalgebra of 1/. 1 

IV. PROPERTIES OF THE LEVI'S FACTOR 

Lemma: Let 1f L be the proj ection operator mapping 
A on L, considered as vector spaces, then 1f LOa is an 
automorphism of L for any (J automorphism of A. In 
particular 1f LOa is an inner automorphism of L if (J 

belongs to the connected part Aue(ll) of the 
l!utomorphisms of A . 

Let us define 
O'(Z) = >..(Z) + p(Z), (3) 

with >"(Z)EL and p(l)ER whenever lEL and O'EAut(II). 
By definition 

[0'(Z1),0'(l2)J=0'([ll,l2]) for each pair ll,l2EL 0 

This relation can be decomposed into the two following 
ones: 

(4) 

[>..(ll),p(l2)J + [P(ll) , >..(l2)J + [P(ll),p(l2)J=p([ll,l2])' (5) 

Equation (4) together with the linearity property of >.. en
sure us that>.. = 1f LOa is an homomorphism of L. From 
Theorem 1 we can deduce that>.. is a one-to-one map
ping, so that>.. is an automorphism of L. 

In particular, if 0' belongs to the connected part of 
the group of automorphisms of A, it is easy to show, 
by using the corresponding derivation, that>.. is a con
nected automorphism of L , and thus an inner automor
phism of L, since any connected automorphism of a 
semisimple Lie algebra is an inner one. 

Let us now decompose II as 1/ = (R oL I) EEl L II' with 
L I acting effectively on R; we have then: 

Lemma 2: The algebras R 0 L 1= 1/ I and L II are stable 
for the connected part of the automorphisms of 1/. 
This property remains valid if L I = O. 

Let us first show that (J(L II) =Lw for any O'E Auto(I/). 
As [L II' R J = 0, and using also the result of the Theorem 
1: O'(R) =R we have 

[O'(LII),O'(R>J=[O'(LII),RJ=O. (6) 

Let us consider l2 E L II and form 

0'(l2) = >..(l2) + P(l2)' 

Equation (6) allows us to write 

(7) 

Moreover we know, from Lemma 1, that if 0' is a con
nected automorphism of A, >.. is an inner automorphism 
of L, so thatB >..(l2) E L II' 

Then it follows from (7) that P(l2) E C <R). Thus we can 
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deduce 

[O'(L II)' O'(L II) J c L II' (8) 

But L II being semisimple, [L II' L IIJ = L II and also 

[O'(L II)' O'(L II) J = O'(L II)' (9) 

Together with (8), Eq. (9) implies O'(Lu)=L II , since 
0'( L II) and L II have the same dimension. 

Consider now the action of O'on III=R oL I. We know 
from Theorem 1 that (I(R) =R. Moreover for any 
II ELI we have 

O'(ll) = >..(l1) + P(ll)' 

with >..(ll) ELI for the reason already mentioned. B 
Then one gets O'(R 0 L I) c R 0 L I and CT(R 0 L I) =R 0 L I' 

Let us mention that this proof is valid for L I = O. 
In this case II = R EEl L, O'(R) = R, and O'(L) = L for any 
(IE Aue (II). 

V. ROLE OF THE ALGEBRA R.o ~ C(R)jC (A r) 
Let Robe the Abelian subalgebra of the inner deriva

tion algebra gIJ (AI) of AI generated from elements of 
the centerC(ln of R, namely Ro~C(J?)/C(llI)' 

Lemma 3: The Lie subgroup Ro of the inner automor
phisms of A generated by the elements of Ro is an 
Abelian invariant subgroup in the group Aut(A) of the 
automorphisms of A. 

Let wr be an inner automorphism of A generated by 
roERo; i~s action on R oL is given by 

wro(l)=l+[ro,zJ 'fIlEL, 

Consider now an automorphism (I of A and form the 
product 0'-1 0 Wro 0 CT. One sees immediately that 

(0'-10wro00')(r)=r 'firER. (10) 

In order to study the action of this product on L we use 
the decomposition (3) for 0'. It follows for 0'-1: 

a- l (Z) = >..-I(Z) + p'(Z), 

such that 

p' (Z) + a-1(p(z)) = 0 'fI l E L . 

A simple calculation gives 

(0'-10 Wro 0 a)(l) = l + [O'-I(ro) ' l + p' (>..(z))J 

(11) 

(12) 

=l+[O'-I(ro),l] (13) 

since O'-I(ro) belongs to C (R) [C (R ) characteristic sub
algebra). Let us notice that, if CT- l (ro) E( (A), we ob
tain the identity automorphism. 

From Eqs. (10) and (13) we deduce that 

0'-10 Wr 00'= Wa-l(r ) (14) 
o 0 

which expresses that the wro's form an invariant sub
group we shall denote 1<.0' in Aut(II). 

Lemma 4: (a) Every nontrivial connected automor
phism of A I = R 0 L I which acts as the identity on R. is 
an inner automorphism wro of AI' generated from an 
element ro of Ro. 
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(b) Two connected automorphisms of AI' a and (]I 

whose restrictions on R. are identical, are R.o equiva
lent, i. e., there exists an automorphism wro generated 
by an element ro of R.o such that 

a= a' 0 wro' 

Let w be a connected automorphism of AI' W * II. A 1 

such that its restriction to R. is the identity II.R on R. . 
For any pair IE L l' r E R., the relation 

[w(l) , w(r)]= w([l,r]) 

becomes 

[w(l),r]=[l,r]. (15) 

As previously, we consider the decomposition 

w(l) = x.(Z) + p(l), (16) 

where X.(l) ELand p(l) ER. . 

In a first step, let us show that X. must be the identity 
onLI" Assume that x.*II.L ; therefore IIELI exists such 
that 1 

Since 

with L I simple, II can be decomposed as 
k 

11 = 'E alII with 1t E Lt. 
1.1 

Then using Lemma 1 and Ref. 8, we can write 
k 

X.(ll) = 'E a l X.(ll) with X.(li) ELI' 
1=1 

In consequence 
k 

X.(ll) -ll= 'E ai(x.(II)-II>*O, 
t=1 

ensures us that there is at least one lt ELI (11 * 0) such 
that 

X.(lt) -11 *0. 

Equations (15) and (16) written for 11 lead to 

[X.(ll) -lpr]= [- p(ll),r] for any rER.. 

Owing to Lemma D of Sec. II, 

[X.(ll) -II' R.]*O. 

Therefore p(ll) * ° and p(ll) f=. (R, ). 

Let us then consider the set 

Lo={zoEL 113 roER, s.t.[lo,r]=[ro,rJYrER}. 

It is easy to prove by repeated use of the Jacobi's 
identity that Lois an ideal in L I' and that, if ro cor
responds to lo E L 0' then [I, ro] corresponds to [I, 10J for 
any IE L I' Moreover one can verify, owing to the 
Lemma D, that Lo is isomorphic to a subalgebra of 
R.IC(R.). But L t simple cannot contain solvable ideal 
other than zero; hence Lo is zero and X. cannot be dif
ferent from IILl" Thus Eq. (15) becomes 

[1+p(I),rJ=[l,rJ for any rER., 
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which implies pel) E C (R.). 

From Theorem 1 we know that the restriction of w to 
R., denoted w / R., belongs to AutO (R. ); but C (R.) is a 
characteristic subalgebra of R., 1 thus w/C(R.) belongs 
to Aue(C(R». Consequently we can consider the semi
direct sum C (R. ) 0 L 1 and deduce: 

wlC (R.) OLIE Aut"(C(R.) oL I)· 

Consider now 

well, l']) = [w(l) , w(l')] for any pair l, I' ELI' 

Using the specific form of w, Eq. (17) becomes 

p([l, I']) = [I, pel') J + [p(l) , I' J. 
This relation is a 1-cocycle equation and also a 1-
coboundary since L I is semisimple. So that, there 
exists r wE C (R.) such that 

p(l)=[rw,l], IELI' 

and 

w(l) = l+ [r w' lJ. 

(17) 

It follows that every connected automorphism of Al 
which reduce to the identity on R. is an inner automor
phism of Al generated by an element of R. o• 

To prove the part (b) let us first note that, if a1 and 
a2 are two automorphisms of A, then: 

all R. 0 a2 1 R. = a1 0 aJR. ' (18) 

Consider now the two connected automorphisms a and 
(]I whose restrictions on R. are identical, It is easy to 
go back to (a) by setting 

~ = a,-l 0 a 

which verifies, following (18), the relation: 

~/R. =a
,
-1/R. o aiR. =IlW 

Therefore there exists w , ro E D such that ro 1\0' 

U,-10 a =W 
roo (19) 

Since, from Lemma 3, Ro is an invariant subgroup of 
Aut(A), the relation (19) defines the Roequivalence of 
a and a'. 

From these two lemmas we deduce: 

Theorem 2: The quotient group Aut"(A1)/Ro is isomor
phic to a subgroup G of Aut"(R.) , 

The property given in Lemma 3 allows to consider the 
quotient group Auto(A1)/Ro which is, according to 
Lemma 4, in a one-to-one correspondence qJ with a sub
set of Aut"(R.). Note that qJ maps any class <1E Aut"(A1)1 
Ro on the automorphism aiR., restriction to R. of any 
element of <1. Using the simple property given in Eq. 
(18) we can deduce that qJ is an isomorphism of 
Aut"(AI)/Ro onto a subgroup G of Auto(R. L 

VI. CONSTRUCTION OF THE DERIVATION ALGEBRA9 

Let g be the Lie algebra of the group G defined in 
Theorem 2, we have: 

Theorem 3: The algebra g can be decomposed into 
two parts: 

(i) The sub algebra l I which corresponds to the action 
of LIon R. in A l' 
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(ii) The subalgebra jj which contains all the elements 
3 of /J (fO such that [3, Lx] c It where R., the algebra of 
the inner derivations of R. cA ~ I< IC ((<.» is an ideal in 
iJ. Moreover a basis in!J can be chosen such tha,~ any 
element of this basis is either an inner derivation} or 
an outer derivation d' satisfying [d' , Z I] = q,. H,!'lnce q 
~an be written as the semidirect sum q = /J 0 L I where 
/J is not in general a solvable Lie algebra. 

It is easily seen first, that Z I can be identified with 
L I and also that the algebra f)/J (/I I) of inner derivations 
of A I isomorphic to the quotient I< 0 L xlC (I< 0 L I) exists 
in q modulo the Lie algebra 1<0' This result can be 
written: f)f) (AI)/l<o~1< 0 L I• 

Consider now 3 E C;, d belonging to a complementary 
subspace of AI in the vector space q. Jle shall show 
that [3, L I] C P... Indeed to the element d corresponds 
the class!! in f) (AI)ll<o: !!=d+l<o, dEf) (AI)' We know 
that [d,f)f) (AI)] Cf)f)(A I)· But, more precisely, let 
d, be the element of f)f) (Ax) cor:r;.esponding to the ele
ment 1 E Lx' From the choice of d in q, and using 
Lemma 1 it can be deduced that d(I') EI< for any l' E Lx 
Then remembering that the inner derivation da acts on 
a' as: 

da (a') = [a, a'] 

and using the elementary properties of the derivations: 

[d, d,](a') = d(d, (a'» - d,(d(a» 

one deduces the action of the derivation [d, d,] on any 
element a'EA v one gets 

fdA ](a') = d([l, a'» - [l A (a')] 

= [d(l), a'] 

and since d(l) EI<, [d, d,] can therefore be identified 
with an inner derivation corresponding to an element 
of 1<. Going back to g, we easily deduce that 

[d, Lxl cR.. 
Conversely it is possible to prove that any outer 

derivation d of I< verifying (20) is an element of g. 

(20) 

Let us show that to any such outer derivation 3 of I< , 
such that [dl Z ] * 0, can be associllted another outer 
derivation d' which differs from d by an inner deriva
tion dr and satisfying 

(21) 

Indeed, respectively, to each d defined above, one can 
associate the subalgebra [)'J of the derivation algebra 
f) (I<) of 1<, whifh is generated~by d and all the inner 
derivations of 1<. Noting that I< form an ideal in f) (1<), 
one can write 

(22) 

Equations (20) and (22) allow us to consider the}ollow
ing semidirect sum, subalgebra of [) (1<): f) dOL x' It is 
then interesting to notice that, from the definition of a 
semidirect sum, [) a-considered as vector space-is 
the representation space for the representation 0' of 
L x associated with the semidirect sum f)'d 0 L I' We are 
then in thE} conditions of Lemma E ([);; playing the role 
of V and I< the role of W). In consequence, there exists 
a vector d' Ef);j, d'riR. such that 
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(23) 

and 

(O'(L x»(d') = [L x' d'] = O. 

Now let us show that any such d' .!?elongs to q . In
deed, one can extend the action of d' on the whole alge
bra A I by setting 

d'(r)=d'(r) for any rEI<, 

for any 1 E Lx' (24) 

Then, d' so defined, is a derivation of Ax; from its 
definition (24) we have just to verify its action on a Lie 
bracket [l,r], where lELx' rEI<, 

d'([z, r)) = d' 0 d,(r) = d' 0 d,(r) = d, () d'(r) = d, 0 d'(r), 

and also 

d' ([I, r)) = [I, d'(r)]. 

Taking into account the action of d' on Lx, this last 
relation ensures that d' is a derivation of /I x' 

Moreover it is easy to see that d' belongs to the class 
of /J (A x)/1< 0 which corresponds to d' by the isomor
phism cp defined in Sec. IV. Therefore d' is an ele
ment of q and this holds for any J satisfying (20) since 
in the relation (23) and dr is in q. 

The algebra f) ( A ) 

It is easy now to determine f) (/I x) from the know
ledge of q. Indeed the subalgebra of inner derivations 
f)f)(/II) is a priori known f)f)(AI)~AxlC(/II) and we 
have just to study the Lie brackets involving outer 
derivations. 

This can be achieved by remembering (proof of Theo
rem 3) that any d' E q such that [d', Z] = 0 can be extend
ed into a derivation d' on AI' the action of which is 
given by Eq. (24). Thus, the action of all the elements 
of a basis in f)(A I) is known, hence the action of the 
general element in f) (AI) is also known, which fully 
characterizes the derivation algebra since, by defini
tion, for any pair of derivations dl and d2 we have 

[dl' d2 ](a) = dl 0 d2 (a) - ~ 0 dl (a), aEA I • 

Finally from the property stated in Lemma 2, we deduce 
the whole algebra 

f) (/I)=f)(A I)tBf)(L u )' 

We recall that f) ( L II) = L II' L II being semisimple. 

VII. APPLICATIONS TO LIE ALGEBRAS OF PHYSICAL 
INTEREST 

In order to illustrate the above results we study the 
derivation algebras of some physically relevant Lie 
algebras. More precisely, we shall pick up examples 
among kinematical invariance Lie algebras which are 
endomorphisms of space-time or phase space. 

In practice, the knowledge of the derivations of the 
radical I< is not necessary. Indeed, f) (I<) is a sub
algebra of q I(n, R) (n = dimR) and it is sufficient first 
to determine the generators of q I(n, R) which commute 
with those corresponding to the action of the semisimple 
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part L on R., and then to select among these elements 
those which are derivations of R.. This can be achieved 
by using a nxn matricial representation of g Z{n, IR). 

A. Algebras of the three-dimensional Euclidian group 
E(3) and of the POincare' group P 

These two examples can be treated by the theorem 
of the Appendix B of the Ref. 4 already mentioned in 
the introduction. Indeed, these two algebras can be 
written ((3) == !l (3) 0 50(3) and P == !l (4) 0 SO(3, 1), 
respectively, and !l(3) [respectively, ~(4)] is an ir
reducible vector space under SO(3) [resp. 50(3,1)J. 

To use our method, first for the Euclidean algebra 
C (3), we note that the radical W (3) is Abelian and there
fore its derivation algebra, which contain only outer 
derivations is isomorphic to gZ(3, IR). Hence we have to 
select in the algebra of GL(3, IR) theRnerators which 
commute with those of the algebra S-0(3j corresponding 
by construction to the action on ! (3) in the semidirect 
sum il(3) 0 SO(3). After calculations we find there 
exists only one such generator which acts as a dilatation 
on ! (3). In consequence the derivation algebra can be 
written 

D({{3» ==! D(3) 0 (SO)3)EBR. D). 

In the same way, it is easy to see there exists only one 
generator in gl(4, IR) which commutes with the genera
tors of 50(3,1) and that this generator still acts as a 
dilatation on! (4). So we obtain the well-known resuIP 

[J (P)== W(4) 0 (SO{3.1)EBR. D ). 

B. Algebra of the isochronous Galilei group G' 

This algebra which is the derived Galilei group alge
bra, can be written 

g'=(Wp (3)ED !K(3» 0 50 j {3}. 

Although the solvable part W is Abelian, the theorem of 
Ref. 4 cannot be applied, the decomposition of ! into 
irreducible subspaces under SO(3) being not unique 
(more precisely, the three-dimensional vector repre
sentation appears with the multiplicity two). But from 
the pOint of view of our technic we are in the same situ
ation as in Sec. VIlA. We have to exhibit in the deriva
tion algebra of ! isomorphicjQ Ql{6, Jt)' t~aximal 
subalgebra of the form!J EBSo.1 tJ), where s0.r(a) still 
corresponds to the action on !p(3) ED ~K(3) in the semi
direct sum (?I p(3) Ell !lK(3» 0 SO,,(3). A simple calcula
tion permits to show that!J is isomorphic to g 1(2, R). 
Hence the derivation algebra of is 

LHg') = (~p(3) Ell !x(3» 0 (SO .1' (3) EB(/ l(2, IR». 

We shall give more details about this algebra in the 
Sec. VIID. 

C. Algebra of the Galilei group G 

The solvable part is no more Abelian. Its derivation 
algebra is a subalgebra of Q 1(7 , R) and in this subalge
bra there exist two generators, denoted Dl and D

2
, 

which commute with SO(3) and which correspond to 
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dilatations on the generators P,K,H. Thus [J(q) can 
be decomposed as2 : 

[J(g) = (PC 1"(3) Ell! x(3) 0 ! n(l» 0 (SO j(3) (M Dl EDR D2) 

and we have the following commutation relations: 

IDl'H]=2H, [Da,HJ=O, 

[Dl>Kj]=-KJ , [D2 ,Kj l=KJ , (j=1,2,3) 

1441 

[DuPj]=P" [D2 ,PJJ==PJ , 
(25) 

[D1 ,D2] =0. 

D. Algebra of the extended isochronous Galilei group G' 
To apply our method we consider this algebra written 

under the form 

?i'== (~M(I) ED ~p(3)O r K (3» DS0.r{3). 

The solvable part is the Heisenberg algebra II of which 
the derivations are well known. 

[J(ff) == ( i( 1"(3) Ell ~ K(3)} 0 (Sp(6, R) EIlRD). 

The 50(3) is contained into the symplectic algebra 
Sp(6, R) and the generators of D(ff) which commute 
with the So(3-) form a subalgebra isomorphic to 
q [(2, R). This algebra was already encountered in Sec. 
VnB where its action was limited on ~ p(3) ED ~K(3). 
We can the write: 

J)(q') = (!l 1'(3) E!l ~ K(3)} 0 ~0.r (3) EDgZ(2, R». 

It is interesting to decompose g 1(2, R) into the direct 
sum: 

gl(2, R)~ SU(l, 1) EDR.D2 
which makes appear the SchrMinger algebra SlO de
fined as the largest algebra which leaves invariant the 
free Schrodinger equation: 

5 == ~ p (3) ED ~ K(3) 0 SO" (3) Ell SU(l, 1). 

This algebra contains the Galilei algebra and the gene
rator H also belongs to the 5U(1, 1) algebra of which the 
two other generators are the dilatation Dl and the "ex
pansion" C. The new generators satisfy the following 
commutation relations: 

[C,PjJ==KJ , [C,KJJ==:O, 

[C,JJJ==O, [C,HJ=D1 , 

[C,DJ==2C, (C,D2 J=0. 

The other commutation relations are identical to the 
relations (25), So, we have established that the 
Schrodinger algebra is the derivation algebra of the 
extended Galilei group, up to a dilatation which acts 
on the mass, It may be interesting to notice that: 

(i) The SU{l, 1) algebra which appears above is in fact 
the Sp(2, R) algebra which subsists in[J(H) if we con
sider only a one-dimensional space. 

(ii) It is easy to conyince himself that following our 
technics and by its construction the Schrodinger algebra 
is complete, Le., it has no center and no outer 
derivations. 
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E, Algebra of the extended Galilei group 'G 

?f = < !H(1) EEl ! M(1) EEl If p (3) 0 ! K(3» oSOJ(3). 

This case differs from the case of the Galilei algebra 
by the appearance of a supplementary generator z, the 
automorphisms (J",. of which act on g as 

C1",.(H)=H+oM, 

c1",.(x)=x, for any xEq,. 

z commutes with all inner derivations, but with the two 
dilatations we have the following commutation relations: 

[D1 ,z)=-2z, [D2 ,z)=2z. 

Hence the derivation algebra of g can be written 

D(g)=<JD(g) EElR .. )o (RD1 EElR D2)· 

ACKNOWLEDGMENTS 

We thank Professor L. Michel for fruitful comments 
and Ph. Combe, J .L. Richard, and M. Sirugue for 
many helpful discussions. 

J. Math. Phys., Vol. 15, No.9, September 1974 

1442 

lL. Michel, Cargese Lectures in Theoretical Physics, edited 
by F. Lur~at (Gordon and Breach, New York, 1967). 

2J. M. Levy Leblond, Group Theory and Its Applications, 
edited by E. M. Loebl (Academic, New York, 1971), Vol. 2. 

3N. Jacobson, Lie Algebras (Interscience, London, 1965). 
4H. Bacry, Ph. Combe. and P. Sorba, Preprint Marseille 72, 
p. 449 (1972). 

5G. Hochschild and J.P. Serre, Ann. Math. 57, 591 (1953). 
6G. Burdet, M. Perrin, and P. Sorba, "On the Explicit Time
dependent Invariance Properties of Quantum Mechanical Sys-
tems", Preprint 72, p. 499 (1972). 

7M. Hausner and J. Schwartz, Lie Groups; Lie Algebras 
(Gordon and Breach, New York, 1968), pp. 143-144. 

8A being an inner automorphism of L =$7=16. there exists 10 
= L7=1 O! III with 1 IE L I such that A(l) = exp(lo 1 exp( -10) for any 
lEL. In consequence, for any ljELl' A(lj) = exp(LaIl.Hj 
x exp(- LO/kl,) = exp(O/llJH; exp(-O/J1J) , which proves that 
A(11) E L J' 

9LetA be a finite-dimensional algebra over the field of real 
numbers: We denote:O ~) the Lie algebra of the group of 
automorphisms of A also called the Lie algebra of derivations 
or derivation algebra of A . We recall that a derivation of A is 
a linear map d =A -A such that 

d[a, a'l= [d(a) , a'l+ [a, d(a') I, for a, a' EA, 
and that inj) VI) the Lie bracket is defined by 

[dt,~J(a)=dl(~(a»)-~(dl(a», fordt,~EDVI) andaEA. 
lOU. Niederer, Helv. Phys. Acta 45, 5, 802 (1972); G. Burdet 

and M. Perrin, Nuovo Cimento Lett. 4, 13, 651 (1972). 



                                                                                                                                    

Spectral representation of the pentagon diagram 
amplitude* 
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A method developed in two previous papers is used to derive a double spectral representation with 
Mandelstam boundary for the pentagon diagram amplitude for the production process A B .... CD N. 
Restrictions on the masses and kinematic invariants for which this representation is valid are found 
and it is discussed how a representation can be obtained for wider ranges of these variables. Finally, 
a comparison is made with the results of other authors. 

1. INTRODUCTION 

Different aspects of the properties of the pentagon 
diagram amplitude or five-point function have been dis
cussed by a number of authors. Cutkosky used the 
Landau-Cutkosky rules1 ,2 to show that, unlike the 
leading singularities of the triangle and box diagram 
amplitudes, the leading singularity of the pentagon dia
gram amplitude is not a branch point. The discontinuity 
associated with this singularity, as calculated by the 
Cutkosky rules, is a delta function. 3 Cook and Tarski4 

made a detailed study of the leading Landau curve of the 
pentagon diagram amplitude and determined the singular 
points of this amplitude for several specific processes. 
A reduction formula expressing the pentagon diagram 
amplitude in terms of five box daigram amplitudes was 
obtained by Halpern. 5 

The pentagon diagram amplitude has also been studied 
with a view to writing it as a double spectral represen
tation, for a restricted range of masses and kinematic 
invariants, by Zav'yalov and Pavlov. 6 Their analysis 
however contains a number of errors. In particular, the 
double spectral representation obtained by them [Eq. 
(23) of Ref. 6] is divergent, that is, infinity is obtained 
when the integration is carried out. Further, the prop
erties of the roots of the quadratic equation yielding the 
leading Landau curve of the pentagon diagram amplitude 
are more complicated than indicated in Ref. 6. The 
roots can under certain circumstances becomes complex 
and this is another reason why their spectral represen
tation is incorrect. 

In this paper we extend a method used in two previous 
papers, Ref. 7 (referred to as VF) and Ref. 8 (referred 
to as I), to obtain a double spectral representation for 
the pentagon diagram amplitude, for a restricted range 
of masses and kinematic invariants. (Equations from I 
will be denoted by plaCing an 1- in front of the equation 
number). 

In Sec. 2, the pentagon diagram amplitude associated 
with the pentagon diagram in Fig. 1 is transformed 
from its Feynman parametrized form into a more con
venient form and the restrictions made on the values of 
the masses and kinematic invariants are discussed. The 
boundary of the region of integration in the quadruple 
integral obtained in Sec. 2 is studied in Sec. 3 and in 
Sec. 4 we obtain some results necessary for reversing 
the order of integration. 

The order of integration is reversed in Sec. 5 and a 
triple integral representation is obtained. In Sec. 6 the 
boundary of the region of integration in the triple inte-

gral is studied and in Sec. 7 results necessary for re
versing the order of integration are obtained. Finally, 
in Sec. 8 the order of integration is reversed and an 
integration is carried out to obtain a double spectral 
representation in sand t for the pentagon diagram am
plitude. We also note in Sec. 8 that one of the inte
grations can be carried out to obtain a single dispersion 
relation in s and in principle the method of Ref. 9 (re
ferred to as II) can be used to obtain a representation 
for the pentagon diagram amplitude for general physical 
invariants. Using this method it should be possible to 
determine directly how and when complex triangle, box, 
and pentagon Singularities occur, resulting in a break
down of even a single dispersion integral over a real 
domain. 

2. TRANSFORMATION OF THE PENTAGON 
DIAGRAM AMPLITUDE 

With plane wave states normalized so that (p' I p> 
= O(3)(P' - p) we define the scalar invariant production 
amplitude P(Sl' S2' S3' S4' S5) for the process AB - CDN 
in terms of the S-operator by 

N 

H K 

G 

A B 

FIG. 1. Pentagon amplitude for the production process 
AB-CDN. 
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(PCPDPN lsi PAPB) 

= - i (21T)4 o(4)(pc + PD + PN- PA - Pa) (21Tt15 /2 

X (2E At1/2 (2E Bt1/2 (2E ct1/2 (2E Dt1/2 (2E Nt1/2 

XP(Sl' S2' S3' S4' S5)' (1) 

wheresl =(PA+PB)2, S2=(PA-PC )2, S3=(PB-PD)2, S4 
= (P D + P N)2, S5 = (Pc + P N)2 are five independent kinematic 
invariants. (The notation has been chosen so that the 
results of 1 can be applied without the need to relabel the 
variables. ) Then, using standard Feynman ruleslO and 
the Feynman identity, we find that the amplitude arising 
from the pentagon diagram of Fig. 1 takes the form 

= - (g/64n2 EFGH) [(Xl' X2, X3' X4, x5), 

where, writing [(XI) for [(Xl' X2, X3' X4 , x5), 

[(x l )=-4EFGH 1,1 do. r H 'df3 r l-a
-

B d:y r l
-
a -B- Y do 

o J o J o Jo 

x [E2a + ~f3 + G2(1_ 0.- f3 - Y - 0) + H2y +.K"I0 

_A2(1_ 0.- f3 - y - 0)0. - 8 2(1_ 0.- f3 - Y - 0)f3 

(2) 

- C2ay _D2f30 -fVJyo - slaf3 - sz(1- 0.- f3 - Y - o)y 

- s3(1 - 0.- f3 - Y - 0)0' s~y - S5ao]-3. (3) 

In Eq. (3), the SI are to be expressed in terms of the 
new variables X I or Xi defined by 

Xl =-Xl = (2EFtl (Sl _EZ -~), 

x2= -Xz=(2GHtl(S2 - GZ _HZ), 

X3 = -X3 = (2GKtl (S3 - GZ -.K"I), 

x4= -X4=(2FHtl (S4 - ~ _H2), 

X5 = - X5 = (2EKrl (S5 - E2 - .K"I). (4) 
We shall find it convenient to use both the quantities Xj 
and XI (i=1, ••• , 5) in the following. The factor g in Eq. 
(2) is given by g=gAEGgBFGgCEHgDFKgNHK' where gAEG' 

•••• ,gNHK are the usual rationalized coupling constants. 

We begin by generalizing the transformation used in 1. 
The change of variables is 

A=(a + f3)-1(1- 0.- f3-y- 0), j.J. =(0.+ f3)-1 y, 

t"=(a + f3)-1 0, v=Wl(a+ f3), 

with the inverse 

a = v-l( v - 1)( 1 + A + j.J. + t"tl , f3 = v-l( 1 + A + j.J. + t"t\ 

y= j.J.(1 + A + j.J. + t"t\ 0 = t"(1 + A + j.J. + t"tl. 

The Jacobian of the transformation is given by 

I o( a, f3, y, O)/O(A, j.J., v, t") 1= (1 + A + j.J. + tt5 v-2 

and we find that 

[(XI) = - 4EFGH .r dt" 10" dj.J. {' dA 10" dv(1 + A + j.J. + t") v-z 

x [E2 v-l (V_ 1)(1 + A + j.J. + t") + ~v-l(1 + A + j.J. + t") 

+ GZA(1 + A + j.J. + t") + HZj.J.(1 + A + j.J. + ~) 

+K2t"(1+A+j.J.+t") 

-A2AV-1(V-1) _ B2AV-l _ CZj.J.v-l(v_1) _D2{;V-l_fVJj.J.{; 

- Sl v-Z( v- 1) - S2Aj.J. - SSA/; - S4V-1j.J. - ssv-l( v- 1)t" ]-3 
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=2EFGH [ .. ~t" [ .. dj.J. ;: .. dA 1" dv. 

x o~ [(V-1)cp(A, j.J., /;)+ l/i(A, j.J., t")- v-1(v-1)v(Xl)]-2, 

(5) 
where 

cp(A, j.J., t") = GZAZ + ~j.J.z + .K"I,z + 2GHXZAj.J. + 2GKX3At" 

+ 2HKej.J.t" + 2EGaA+2EHcj.J. + 2EKX5~+E2, 

( 6) 
l/i(A, j.J., t") = G2A2 + HZj.J.z + K2t"2 + 2GHXzAIJ. + 2GKX3A~ 

+ 2HKelJ.t" + 2FGbA + 2FHX41J. + 2FKdt" + ~, (7) 

(8) 

The constants A2, BZ, C2, DZ, fVJ have been expressed in 
terms of a, b, c, d, e defined by 

2EGa=E2 + G2 _A2, 2FGb =~ + G2 _ B2, 

2EHc=Ez +H2 _ C2, 2FKd=~ +Kz _Dz, 

2HKe =Hz + K Z 
- fVJ, (9) 

and we have also used Eq. (4). 

To simplify the proof of a spectral representation we 
restrict the quantities defined in Eqs. (4) and (9) as 
follows: 

a, b, c, d, e> 0, XI> 0 (i = 1, ..• , 5). (10) 

Equation (10) ensures that cp(A, IJ., t") > 0, l/i(A, IJ., t") > 0 for 
A ~ 0, j.J. ~ 0, t" ~ 0; in fact the term in square brackets in 
Eq. (5) is always positive and [(XI) is well defined. 
While Eq. (10) can be satisfied with physical invariants 
by choosing the internal masses sufficiently large, the 
restrictions on XI mean that the amplitude we are con
sidering does not in general correspond to a physical 
process since for the physical amplitude associated with 
the pentagon diagram in Fig. 1 Xl' X 4 , and X5 would in 
general be negative. However, from the form of [(Xj) we 
see that a spectral representation cannot in general be 
proved for negative Xl' X 4 , and X 5 , using real analysis 
only. One way of obtaining the physical amplitude would 
be to start with the spectral representation for the un
physical amplitude [Eq. (65)] and do an analytiC contin
uation in Xl' X 4 , and X5 using, for example, a general
ization of the method used in II. We discuss this problem 
further in Sec. 8. 

The argument leading to Eqs. (1-19) and (1-20) can now 
be used to show that 

o f" dt"l" dlJ. [(x )=lim - - -
I .'0 o~ t" IJ. 

• 0 

(11) 
where 

U(~, A, IJ., t")= (I; - h(A, j.J., /;» (I; - k(A, IJ., t"», (12) 

Z~~:~: ~~}=;(2EF)-1 ([Vcp(A, IJ., t")± VlJi{A, IJ., t")f-E2 -~}, 
(13) 
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and cf>(X, Il, 1;"), I/J(X, Il, 1;") are given by Eqs. (6), (7). 

3. STUDY OF h(X,p.,t) 

To reverse the order of integration in Eq. (11) we 
need to examine the function h(X, IJ., 1:) for X? 0, Il? 0, 
I:? 0. As in Sec. 4 of I (or of VF) we write 

cf>(X, Il, t) =PlX2 + 2ql(ll, I;")X + rl(ll, 1:), 

I/J(X, Il, 1:) = PlX
2 + 2q~(Il, I:)X + ~(Il, 1:), 

where 

Pl =G2
, 

Ql(IJ.,I:)=G(HX2X+KXal;"+Ea), 

(14) 

r1(p., 1;")=H2IJ.2 + K2!;"2 + 2HKej.J.!;" + 2EHcj.J. + 2EKX51;" + E2, 

Q~(j.J., 1;")=G(HX2X+KXal;"+Fb), 

(15) 

Then the argument of Sec. 4 of I (or of VF) shows that 
for fixed j.J. ? 0, I:? 0, h(X, j.J., 1:) increases strictly from 
h(O, j.J., 1:) to + 00 as X increases from ° to + 00, whenever 
hx(O, j.J., 1:) ? 0. Now 

hx(O, IJ., 1:) = (EF)-l (v'rl(ll, 1:) + v'~(Il, 1:)) ll(ll, 1;"), (16) 

where 

(17) 

Thus, when Eq. (10) holds, it follows from Eqs. (15), 
(17), and (16) that for fixed j.J. ?O, I;" ?O, h(X, j.J., 1:) in
creases strictly from h(O, j.J., 1:) to + 00 as X increases 
from ° to + 00. Similarly, for fixed X? 0, I:? 0, h(X, Il, 1:) 
increases strictly from h(X, 0, 1:) to + 00 as Il increases 
from 0 to + 00 and for fixed j.J. ? 0, I:? 0, h(X, j.J., 1;") in
creases strictly from h(X, j.J., 0) to + 00 as I: increases 
from ° to + 00. 

4. SOLUTIONS OF U(tX,p.,n= 0 

In this section we study the behavior of the zeros of 
u(~, X, Il, 1:) first when ~,j.J. and I: are held fixed, then 
when ~,X, and I: are held fixed and finally when ~,X, and 
j.J. are held fixed. From Eqs. (12), (13), (6), and (7) we 
have 

4E2 ~ u(~, X, j.J., 1:) = alWX2 + 2bl(~' IJ., I;")X + Cl(~' Il, 1:) 

= azWIl2 + 2b2(~' A, 1;")1l + C2(~' X, 1;") 

= aaWI;"2 + 2ba(~' X, 1l)1: + ca(~' X, Il), (18) 

where 

atW = 4G2[(Ea - Fb)2 - v(O], 

aaW =wa[(Ec - FX4 )2 - v(~)], 

aaW=4K2[(EX5-Fd)2- vW], 

bl(~' j.J., 1;") =,B(~, - X2)1l + Y(~, - Xa)1: + bl , 

b2(~' X, I;")=,B(~, -X2)X+ 15(~, - e) I;" + b2, 

bg(~, X, 1l)=Y(~, -Xg)X + Ii(~, - e) I;" + bg, 

,B(~, - X2) = 4GH[(Ea - Fb)(Ec - FX4 ) -X2 v(~)], 

Y(~, - Xg) = 4GK[(Ea - Fb)(EX5 - Fd) -Xa v(~)], 

J. Math. Phys., Vol. 15, No.9, September 1974 

Ii(~, - e) = 4HK[(Ec -FX4)(EX5- Fd) - e vW], 

bl '" bl(~' 0, 0) = 2G[(Ea - Fb)(E2 -~) - (Ea + Fb)v(~)], 

b2 '" b2(~' 0, 0) = 2H[(Ec - FX4)(E2 - F2) - (Ec + FX4)V(~)], 

bs "'b3(~' 0, 0) = 2K[(EX5 - Fd)(E2 -~) - (EX5 + Fd)v(~)], 

(19) 

and v(~) is given in Eq. (8). 

The quantities Cl(~' Il, 1;"), C2(~' X, 1;"), ca(~' X, Il) are 
determined from Eq. (18) by putting X, Il, 1;", respec
tively, equal to zero and using in addition Eq. (19) and 
the fact that 

Cl(~' 0, 0) = C2(~' 0, 0) = ca(~' 0, 0) = 4E2F2(e - 1). (20) 

The argument of Sec. 5 of VF (see also Sec. 5 of I) 
shows that for each ~ ? h(O, Il, 1;"), where IJ. and I;" are 
fixed and? 0, the quadratic equation in A 

has two real roots given by 

X±(~, j.J., 1;")= [a1W]-1(- bl(~' Il, I;")'f{[bl(~' Il, 1;")]2 

- alWCl(~' Il, 1;")}1/2). 

From Eqs. (19), (13), (14), and (15) we see that 

b1(h(0, Il, 1:), 1l,1:) 

(21) 

=-4[v'rl(IJ., 1;")+v'~(Il, 1;")] v'rl(ll, 1;")v'r'1(1l, l;")ll(ll, 1;"), 

(22) 

where ll(ll, 1:) is given in Eq. (17). Since ll(ll, 1:»0 when 
Eq. (10) holds it follows that X.(h(O, Il, 1;"), IJ., 1;") 
=0 H-Ch(O, Il, 1;"), Il, 1:) and in fact X.(~, Il, 1:) is the in
verse of the strictly increasing function h(X, Il, 1;") on ° ~ X < 00. Thus X.(~, Il, 1;") increases strictly from ° to 
+ 00 as ~ increases from h(O, 1l,'I;") to + 00. Similarly for 
each ~ ? h(X, 0, 1;"), where X and I;" are fixed and? 0, the 
quadratic equation in Il 

u(~, X, Il, 1:)=0 

has two real roots, j.J.±(~, X, 1;") given by the right-hand 
side of Eq. (21) with Il- X, 1- 2. The root Il.(~, X, 1;") is 
the inverse of the strictly increasing function h(X, IJ., 1:) 
on ° ~ Il < 00. Further, for each ~ ? h(X, Il, 0), where X 
and Il are fixed and ? 0, the quadratic equation in I;" 

U(tx,IJ., 1:)=0 

has two real roots, I;"±(~, X, Il) given by the right-hand 
side of Eq. (21) with j.J. -X, 1;"- IJ., 1- 3. Again !;".(~, X, Il) 
is the inverse of the strictly increasing function h(X, IJ., 1;") 
on ° ~ 1:< 00. 

5. REVERSAL OF ORDER OF INTEGRATION 

Since Eq. (10) holds, we showed in Sec. 3 that 
hx(O, Il, 1;") > ° for all j.J. ? 0, I;"? ° and so from Sec. 4, 
X.(~, Il, 1:) is the inverse of the strictly increasing func
tion h(X, IJ., 1:) on ° ~X < 00 for each IJ.? 0, I;"? 0. Thus 
Eq. ( 11) can be written 

I(x i )=2EF lim "~?2 f"" dl;" f"" dll 
€I 0 un.. - • I: 0 Il 

, a 1"" d~ x 11m -" - -t - A(~, Ii, Il, 1:), 
~ 10 v X 2 h( 6 , ... ,t) S - Xl 

(23) 
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where 

A(1;, a, fL, /:) 

(24) 

Note that h(a, fL, 1;), bl(1;, fL, /;), A.(1;, fL, 1:), and A(1;, a, fL, 1:) 
depend on x2 • 

Now since. for fixed I; ;;'0, fL.(1;, 0,1;) is the inverse of 
the strictly increasing function h(O, fL, t) on ° .,.; fL < 00, 

the argument of Sec. 6 of 1 can be used to show that 

(25) 

where 

Note that 

F(1;, x2' 0) 64E2F 2G2H2[VW:F F(1;, x2), 

where F(!;, x2 ) is given in Eq. (AI) (and in Eq. (1-12) 
with 11 - X 2 , d -+ X4 ). 

(34) 

Now since, as shown in Sec. 4, 1:.(1;,0,0) is the in
verse of the strictly increasing function h(O, 0, 1:) on 
0.,.; 1: < 00 we find on inserting Eq. (33) into Eq. (25) and 
reversing the order of the 1: and 1; integrations that 

. 0 f" d1; fe.cl,G.O) dl: 
I(x l)=hm-2 -- -

,'0 oK. MO,O,.) 1; - Xl • I; 

x j" ..!EL ~FGH v(Hz . 
,.<l.CI 11- xa [F(!;, 11,1:)] 

(35) 

Note that h(O, 0, e), 1;.(1;,0,0), and F(1;, 11, 1:) depend on ~ 
through Eqs. (4) and (9). 

16EFGHvW (1 du(lu2 -m) 
X(1;, 1:) = [c2(~' 0,1:)]1/2 Jo (lu2 _ m)2 + 4nu2' (26) 6. STUDY OF f+(tt) 

Here 

1 = [fL.(1;, 0,1;)]-1 b1(1;, fL-<~, 0, /:), /:) 

m = [fL.( 1;,0, /:) ]-1 bl(1;, fL.(~, 0, 1;), /:) 

n= - alW[c2(~' 0, 1:)]-1 {[b2(~' 0, /;)]2 - a2(~)c2(1;, 0, /:H. 
(27) 

Since from Eq. (18) Cl(~'O, /:)=C2(~'0, /:), we have 

lm - n = [c2(~' 0, /;) ]-2 ([G( 1;, X2, t)]2 

To reverse the order of the I; and 1) integrations in 
Eq. (35), we need to examine the function/'(~, 1;) for 
~ ;;'1, 0.,.; 1;.,.; I;.(~, 0, 0). First we examine the behavior 
of/.(~, 1;) as 1: + I;.(~, 0, 0) with ~ fixed and ;;.1. We showed 
in Sec. 3 that when Eq. (10) holds, ll(O, t) > ° and thus 
from Eq. (22) 

bl(~' 0, t.(1;, 0, 0» < 0. (36) 

Similarly 

b2(~' 0, t.(1;, 0, 0» < ° (37) 

and hence from Eqs. (18) and (31) and the fact that 

vW>O (38) 

- {[bl(~' 0, I:rr - al(~)cl(~' 0, m 

x {[b 2(!;, 0, 1;»)2-aa(!;)c2(~'0, I:)}) 

= [c2(!;' 0, 1:)]-1 F(~, X 2 , 1:), (28) for 1; ;;. 1 it follows that I.(~, t) - + co as t + t.(~, 0, 0). 

where 

G( 1;, X2, 1:) = - [J3(!;, Xa)Ca( 1;,0, t) - bl ( 1;,0, I:)ba( 1;,0, 1:)], 

(29) 

and 

F( 1;, X 2 , 1:) = [J3( ~, X 2 ) )2 C2( 1;, 0, 1:) - 2J3( ~, x2)b 1 ( 1;, 0, t )b2( ~, 0, t) 

+ [bl(~' 0, t»)2 aaW + [b2(1;, 0, t»)2 a l (!;) - alWaaWC2(!;, 0, t) 

= 16G2H2[v(1;)]2 c2(1;, 0, I:)[Xa - I'<~, 1:)] [X2 - f.(1;, t)]. (30) 

Here 

1.( 1;, t) = [4GH v( 1;)c2( 1;, 0, 1:)]-1 (- 4GH C2(~' 0, 1:)(Ea - Fb) 

X(EC - FX4) + bl (!;, 0, l;)b2(!;, 0, 1;) ± {[b 1(1;, 0,1:»)2 

- a1(!;)c l (!;, 0, I;W/ 2 

x ([b2(~' 0, 1:)]2 - aa( !;)c2( 1;, 0, 1:)}1/2) 

and the argument of Sec. 5 of 1 (or of VF) shows that 

[bl(!;, 0,1:)]2 - al(1;)c1(!;, 0,1;) > 0, 

[b 2(1;, 0, /:)]2 - a2Wc2(!;, 0,1;) > 0, 

for!;;;' h(O, 0,1:). Further since ca(1;, 0,1:) > ° for 
1; > h(O, 0, 1:) it follows from Sec. 6 of I that 

X(~'I:)=8EFGHV(!;)i" (_ )[.$[1; 1:)]1/2' 
f.<t,.() 11 X2 ,11, 
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(31) 

(32) 

(33) 

Next, from Eq. (31) we see that the derivative of 
1.(1;, t) with respect to I: is 

I.{(~, /:) = [4GH vW]-l[ca(1;, 0, t)]-2 

x (- bl (!;, 0, 1:){[b2(1;, 0,1:)]2 - aaWc,.(1;, 0, 1:)}1/2 

- ba(1;, 0, /;){[bl(~' 0, /;):F - a l (1;)cl (!;, 0, 1;W/2) 

XL(1;, /;), (39) 

where 

L(1;, 1:)= [Q(~, 1;)/v'R(~, 1:)]+ [Q'(1;, 1:)/v'R'(~, 1:)], (40) 

Q( 1;,1:) = /;(a301 - yb3) + (bsb l - YCs)' 

Q'(1;, 1;)= 1:(lZab2 - Cbs) + (bsb?,- oc3 ), 

R( 1;, 1:) = 1:2(y2 - aSa1) + 21:(yb1 - a1bs) + b~ - aIel' 

R'(1;, /;) = 1:2(a2 
- asaa) + 21:(Cb2 - a."b3 ) + b~ - aac2' (41) 

In Eq. (41) al has been written for ale!;), C1 for Cl(~' 0, 0), 
'Y for 'Y(~, -Xs) etc. where these quantities are defined 
in Eqs. (19) and (20). From Eq. (36) together with the 
facts that b1 =bl(~' 0, 0)< ° when Eq. (10) holds and 
bl(~' 0, 1;) is linear in 1; it follows that 

bl(~'O,/;)<o (42) 

for all 0 .,.; I: .,.; U 1;, 0, 0). Similarly 

(43) 
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for all 0 ~ I; ~ I;.(~, 0, 0). Thus the term in boldface pa
rentheses in Eq. (39) is always positive and f.c(~' 1;) 
vanishes if and only if L(~, t) vanishes. 

Now 

(b~ - ascs)R(~, t) = Q2(~, t) - C2(~' 0, t) C2(~' - Xs), 

(b~ - ~c3)R' (~, t) = Q/2( 1;, t) - c2( 1;,0, t) Cs(~, - e), 

where (b~ - agcs) > 0 for 1; ~ 1, 

C2( l;, - Xs) == C3(y2 - alaS) + b~a3 + b~al - 2yblbs' 

(44) 

Cg(l;, - e) = CaW - ~a3) + b~ag + b~~ - 20b2bs, (45) 

and C2(~' 0, /;) > 0 for ~ > 1, 0 ~ /;< t.(l;, 0, 0). In Eqs. (44) 
and (45) the abbreviations described after Eq. (41) have 
again been used. The argument of Sec. 4 of VF then 
shows that f.c(l;, t o( m = 0 with 0 ~ to(~) < t.( l;, 0, 0) if and 
only if 

and 

(i) C2(~,-X3)<0, Cg(l;,-e)<O (46) 

(ii) Q(~, toW)/v'- C2(I;, -Xs)= - Q'(1;, toW)jv'Cs(~' - r) 

( 47) 

solves to give 0 ~ to(~) < t.(~, 0, 0). Thus, for fixed 
I;~ 1 f.(1;, t) is strictly increasing on 0 ~ t ~ 1;.(1;,0,0) if 
and only if L(l;, 0) > 0 or 

G2(1;,-Xs) + Gi1;,-e) >0 
[1;2 + 2abl; + rr + b2 - 1]1/2 [~2 + 2cX

4
1; + c2 + X! _ 1]1/2 , 

(48) 

where G2(1;, -Xs) and Gg(1;, - e) are given by Eqs. (A13) 
and (A14). When Eq. (10) holds we see that each of the 
two terms in Eq. (48) is positive and hence f.(l;, t) in
creases strictly on 0 ~ t ~ /;'(1;, 0, 0) for fixed I; ~ 1. 

7. SOLUTIONS OF F(tl1.r)= 0 

Next we study the behavior of the zeros of F(1;,'I), t) 
when I; and 1) are held fixed. From Eqs. (30) and (19) we 
find that 

F(~, 'I), t) =A(I;, 1)jK')f + 2B(~, T1iK2)t + C(~, 1), (49) 

where 

A( 1;, 1);K2) =ag([,8( l;, 1))2- al~) + y2~ + o2a1 - 2,8(l;, 1)Yo, 

B(~, 'I);K') = b3{[,8(~, 1):r -al a2) + blY~ + b2 0al - ,8(~, 1)b10 

- ~(~. 1)b2y, 

The abbreviations described after Eq. (41) have again 
been used except for ,8(~,1), which is the only term that 
depends on 1). 

The discriminant of the quadratic function of I; in Eq. 
(49) is 

[B(~, 1);K2»)2 - A(~, 1);K')C(~, 1) = ({,e(1;, 1))}2 - a l a2) 

x«b~ - agcs) {[J3(~,1):r - al~} 

+ 2 [- ba(blo + b2y) + a3b1b2 + caYO ],8( ~,1) 

+ (blo - baY):! + 2bs(b1ya2 + baoa1) 

- C3V~ + o2a1 ) - aa(bi~ + b~al» (51) 
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and the term in boldface parentheses vanishes when 

,8(~.l1)=(b~ - ascsfl{bs(b1o + bzY) - aSbl b2 - csYo 

:I: [C2(l;, -Xg)Cs(!;, - e)]1/2} (52) 

giving 1) = p*(~;K2), with P*(~;K') defined in Eq. (A6). The 
terms C2 (!;, -Xs) and Cs(1;, - e) are defined in Eq. (45). 
Thus 

[B(t l1jK'»)2 -A(!;, 1)jK')C(~, 1) 

= {I,8(1;, 1)]2 - al~}(16)2E2 F 2G2H2K2[VWJ3 P(~, l1;K'), (53) 

where 

PC!;, 1)jK') = (1;2 + 2dX5 !; + d 2 + X~ -1)(1) - P.(1;jK'» 

X (11- P.(I;;K2». (54) 

The discriminant in Eq. (53) is always nonnegative sim 
the inverse of f.( ~, t) is real. To show that it is in fact 
positive we note first that when Eq. (10) holds 

(55) 

for aU I; ~ 1, 1') ~ f.( 1;,0) [or equivalently for 1) ~ 1, 
~ ~ g.(1) where g.(1), defined in Eq. (A3) and in Eq. 
(1-36) with d-X 4 , is the inverse off.(~,O)]. Estab
lishing Eq. (55) is straightforward but tedious. Secondly 
in Appendix A we show that either P*(1;;K') are complex 
conjugates or 

(56) 

for ~ ~ 1. Thus, since the first factor in Eq. (54) is 
positive when Eq. (10) holds and Eq. (38) is satisfied it 
follows that P(1;,1)jK2

) and hence the right-hand side of 
Eq. (53) is in fact positive for ~ ~ 1, 11 ~f.(~, 0). 

The two real solutions of 

are 

:= [A(~, 1);K')]-1 (- B(1;, l1jK2) 'F {IB(1;, l1jK2)]2 

-A( 1;,l1jK')C( ~,1')>y/2). 

Now from Eqs. (30) and (49) it follows that 

CU'/.(~, 0»=0 

and from Eqs. (50), (40), (41), (42), and (43) 

B(~,f.(~, O);K') 

Thus 

1;.(~,/,<1;, 0)jK2) = 0 '" 1;6(1;,/.( 1;, 0);K2) 

and also as 11 - + 00 

t.(1;,/.(~, O)jK') - t*(~, 0, 0), 
b 

(57) 

(58) 

(59) 

where I;*(!;, 0, 0) are defined by the right-hand side of 
Eq. (21) with 1- 3, JL - 0, t - O. It now follows that 
t.(~,1)jK2) is the inverse of the strictly increasing func
tionf.(!;, t) on 0 ~ I; ~ t.(1;, 0, 0). Hence t.(1;,l1,~) in
creases from 0 to /;+(~, 0, 0) as 1) increases from 
f.(~, 0) to + 00. 
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8. SPECTRAL REPRESENTATION OF THE 
PENTAGON DIAGRAM AMPLITUDE 

Since for fixed ~ ?- 1 I.(~, /;) is strictly increasing on 
o ~ /; ~ /;.(~, 0, 0) and /;.(~, 1) ;.z:«!) is the inverse of f.(~, /;) 
on 0 ~ /; ~ U~, 0, 0), Eq. (35) can be written 

(61) 

where 

and A(~, 1);.z:«!), B(~, 1);~), and C(~, 1) are given in Eq. 
(50). Note that in Eq. (61) h(O, 0, E) and/.(~, E) depend on 
K2. From Eqs. (30) and (49) and the fact thatf.(~, /;) is 
strictly increasing on 0 ~ /; ~ U~, 0, 0) we have C(~, 1) > 0 
for ~ > 1, 1) > I.(~, 0). The integration in Eq. (61) can then 
be performed (c. f. Sec. 5 of VF) to give 

r(~, 1), E;K2) = [C(~, 1) ]-1/2 

The method of differentiating with respect to ~ and 
taking the limit E + 0 is now very similar to that given in 
Sec. 6 (and 7) of I and in Ref. 11. We find that 

[( )-['" ~f'" ~ 8EFGHvW 
Xi - 1 ~-X1 f.({.O)1)-X2 [C(~,1)11/2 

x (-i)(o/ClK2
) [B(~,1);K2)]-A(~,1);K2)C(~,1) (64) 

B(~,1);K2) 2-A(~,17;~)C(~,1J)} • 

From Eqs. (8) and (19) it follows that the factor 
{[!3( ~,1)]2 - a1 a2 }[ vW P in Eq. (53) does not depend on K2. 
Thus 

[(XI) = - if'" ~1'" d1) 1 
1 ~-XI f.(1)-X2 v'F(~,1) 

X (O/O.z:«!)[K2 P(~,1);K2)] 
j(2 P(~, 1);x2) 

I ('" d~ 1'" d1) 1 
=-2 JI ~-XI f.W 1)-X2 YF(~,1) 

where 

P(~, 1);K2) = 32E2F2G2H2~ P(~, 1);~) 

(65) 

(66) 

and P(~, 1);.z:«!) is given in Eq. (54). The functions I.W 
(=f.(~, 0» and F(~,1) are defined in Eqs. (A2) and (AI) 
[and in Eqs. (1-11) and (1-12) with d-X4 ]. Their prop
erties are studied in detail in Sec. 8 of I. Note that the 
relationship between P( ~, 1) ;~) and P( ~, 1) ;K2) is similar 
to that between F(v,w) andF(~,1) in Eq. (1-12); thatis, 
P(~, 1);K2) would be the function we would choose to de
scribe the leading Landau curve of the pentagon diagram 
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amplitude had we been working directly in the masses 
and kinematic invariants rather than in the related 
quantities in Eqs. (4) and (9). 

As discussed in Sec. 2, while Eq. (10) can be satisfied 
with physical invariants for sufficiently large internal 
masses, the spectral representation in Eq. (65) does 
not in general correspond to the physical amplitude 
since for the physical amplitude associated with the 
pentagon diagram in Fig. 1 Xl' X 4 , and Xs would in 
general be negative. To obtain the physical amplitude 
one might then start with Eq. (65) and do an analytic 
continuation in XI> X 4, and X 5• Continuation in Xl (= - Xl) 
(and also in X2) is straightforward since Xl occurs only 
in the Cauchy kernel. The continuation in X 4 and 
X5 is much more difficult since F(~,.,.,) depends on 
X~ andP(~, 1) ;K2) depends on both X4 and Xs' The inner 
integration in Eq. (65) can, of course, be carried out, 
for example by using real and, if P",(~;.z:«!) are complex, 
complex partial fractions, to give a single integral rep
resentation of [(Xl)' Thus in prinCiple it should be pos
sible to generalize the method of analytic continuation 
used in II to apply to the pentagon diagram amplitude. In 
this way it should be possible to determine directly how 
and when complex triangle, box and pentagon singular
ities occur, resulting in a breakdown of even a Single 
dispersion integral over a real domain. For the general 
mass case that we have been considering in this paper 
this would be a very difficult problem because of the in
creased number of singularities and their more compli
cated behavior. However, it is likely that this program 
can be carried out for some specific processes of phys
ical interest. The method used in II could in principle 
also be generalized to obtain [(Xl) for the case when the 
stability conditions a, b, e, d, e> - 1, rather than just 
a, b, e, d, e> 0, hold. 

Finally we compare our spectral representation in 
Eq. (65) with that given in Eq. (23) of Ref. 6. First note 
that [(Xl) given in Eq. (65) is real and well defined since 
I.(~) is real when Eq. (10) holds and, from Eqs. (AI) 
and (A10), F(~, 1) > 0 for ~ > 1, 1) > f.m and P(~, 1);.z:«!) > 0 
for ~ ?- 1, 1)?-I. W. Further for fixed ~ both F( ~, 1) and 
P( ~, 1) ;K2) are quadratic fUnctions of 1) and for fixed 17 
they are quadratic functions of ~. In comparison, in Eq. 
(23) of Ref. 6 it is assumed that p",(~;K2) are always real 
whereas we show in Appendix A that they can in fact be 
complex for the case considered there. More important, 
the spectral representation in Eq. (23) of Ref. 6 is di
vergent, that is, infinity is obtained when the integration 
is carried out. 

APPENDIX A 

We collect here a number of results involving the 
various functions needed in the main body of the paper. 
It is assumed throughout that Eq. (10) holds. From Eqs. 
(34) and (30), 

F(~, x2 ) =F(~, x2 ;a, b, e, X 4 ), 

= (e -l)(x~ - 1) - 2(~ -1)(x2 - 1)(aX4 + be) 

- 2(~ -l)(a+ e)(b +X4 ) - 2(X2 -l)(a+ b)(e+X4) 

+(aX4 -be)2 -(a+b+e+X4 )2, 

=(e -1)[x2 - I.m] [x2 - f-<~)], 

(AI) 
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where from Eqs. (31) and (19) 

f.W ==f.(~, 0) 

= (e -lt1 [(~ - 1)(aX4 + be) + (a + b)(e + X 4) 

± (~2 + 2ab~ + a2 + b2 _ 1)1/2 (e + 2eX4~ + e2 + x! _ 1)1/2] 

(A2) 

and 

g.(x2) = (~- 1t1 [(X2 - 1)(aX4 + be) + (a+ e)(b + X 4) 

±(~ + 2aex2 + a2 + e2 - 1)1/2 (~+ 2bX4X2 + b2 +X! - 1)1/2]. 

(A3) 

Note also that 

(e -l)F(~, x2)= [G(~, x2»)2 - W + 2ab~ + a2 + b2 -l} 

x{e + 2eX4~ + e2 + X! -l}, (A4) 

where 

G(~, x2) ==G(~, x2;a, b, e,X4 ) 

= - X2(~2 - 1) + (~-1)(aX4 + be) + (a + b)(e + X 4). 

(A5) 

The above functions (with X4 - d, x2 - y) were also de
fined in Eqs. (1-12), (1-11), (1-36), and (I-A5) and their 
properties were discussed in detail in Sec. 8 and Ap
pendix A of I and in Sec. 4 of II. 

From Eqs. (52) and (45) we find that 

p.(~;K2)=(e + 2dXs~ + d 2 +X~_1)-l 

x r - E(~, X 3, e) ± {F2(~' -X3)F3(~' - e)p/2], (A6) 

where 

E(~,X3' e) 

=(e -1)eX3 + (~-l)[e(ad+ bXs) +X3(ed+X~s) - aX4 - be] 

+ e(a + b )(Xs + d) + X 3(c + X4)(Xs + d) + ~ac + X~bX4 

- Xsd(be + aX4 ), 

F2(~' -X3) ==F(~, -Xs;a, b,Xs' d), 

F3(~' - e)==F(~, - e;e,X4 ,XS' d), 

with F(~,x2;a, b, e,X4) given in Eq. (AI). 

Since 

(e+ 2dXs~ + d"+X~ -1) > 0 

the inequality 

P(~, 1'/;~) > 0 

(A7) 

(A8) 

(A9) 

(A10) 

will hold for ~ ? 1, 1'/? f+W if either P.(~;~) are complex 
conjugates or if Eq. (56) holds. That it is possible, when 
Eq. (10) holds, for P.(~;~) to be either real or complex 
conjugates depending on the value of ~, where ~? 1, can 
be seen as follows. Consider first the case when 

0< a,b,Xs,d<l, Xs>O. 

Then one of the four possible configurations of the curve 
r defined by F2(~' -X3 )=0 is as shown in Fig. 1 of II 
with 1'/ - -Xs' We see that F2(~' -Xs) may be positive, 
zero or negative depending on the values of ~ and X 3 • 

When a, b, XS ' d are no longer restricted to be less than 
1, then there are more different configurations of r. 
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Examples of the possible configurations of rare 
sketched in Ref. 12. Again F2(~' -X3 ), and also 
Fs(~' - e), may be positive, zero or negative. This 
statement is still true if the zeros on the right-hand 
sides of the inequalities in Eq. (10) are replaced by 
ones, the case initially considered in Ref. 6. 

We now have the following cases to consider 

(i) F2(~' -XS)F3(~' - e) < O. Then P.(~;~) are complex 
conjugates and P(~, 1'/;~) > 0; 

(ii) F2(~' -X3) ?O, Fs(~' - e) ?O. From Eq. (A7) it 
follows that 

(~2-1)E(~,Xs,e)+(~2+2dX5~+~+~-1) 

X [(~-1)(aX4+be)+(a+b)(c+X4)] 

= G2(~' - X3)G3(~' - e), 

where 

G2(~' -X3) == G(~, -X3;a, b, X S' d) > 0, 

Gs(~' - e)== G(~, - e;e, X 4, XS ' d) > 0, 

(A12) 

(A13) 

(A14) 

and G(~, x2 ;a, b, e,X4 ) is given in Eq. (A5). Then using 
two equations similar to Eq. (A4), relating F2(~' - X 3 ) 

and G2(~' -X3) and relating F3(~' - e) and G3(~' - e), and 
defining 

cosh K1 

_ G2(~,-X3) , 
- (~2 + 2dX5~ + ~ + X! _ 1)1/2(e + 2ab~ + a2 + b2 _1)1/2 

(A15) 

cosh K2 

_ G3(~' - e) 
- (e + 2dX5~ + if + ~ _1)1/2 (e + 2cX4H e2 +X; _1)1/2 

we find that 

p.(~;K2) _ f'(~)= (e _1)-1 (~2 + 2ab~ + a2 + b2 _1)1/2 

X (e + 2eX4~ + e2 +x! _ 1)1/2 

(A16) 

X [-1 - cosh K1 cosh K2 ± sinh K1 sinh K2] 

= (e - 1)"1 (~2 + 2ab~ + a2 + b2 _ 1)1/2 

X(~2 + 2eX4~ + e2 + X! _ 1)1/2 

X [ - 1 - cosh (K1 'f K2)] < O. (A17) 

Thus Eqs. (56) and (AlO) hold. 

(iii) F2(~' -X3) < 0, F3(~' - e) < O. In this case we de
fine coscf>l by the right-hand side of Eq. (A15) and 
coscf>2 by the right-hand side of Eq. (A16). Then 

since the inequalities in Eqs. (A13) and (A14) hold. 
Again Eqs. (56) and (AlO) are valid. 

(A18) 
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Schrodinger equation with inverse fourth-power potential, a 
differential equation with two irregular singular points 
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!he SchrOdinge~ radial equation with inverse fourth-power potential is treated analytically. Solutions 
In the form of Integral representations of the generalized Laplace type are considered. Standard 
solutions a~e defined relative to each of the two irregular singular points of the differential equation. 
The coefficients In the linear relations persisting between any three of the standard solutions are 
obtained. The expressions for the coefficients, which contain some Taylor and Laurent series and 
finite determinants, are suitable for electronic computation. From the coefficients the S matrix and 
the scattering phase shifts may be obtained immediately. 

1. INTRODUCTION 

The inverse fourth-power potential is one of the few 
Singular potentials for which the SchrOdinger radial 
equation can be treated analytically. Several authors1

-
4 

have utilized the fact that, by suitable changes of the 
variables, the SchrOdinger equation with this potential 
can be transformed into the Mathieu equation the prop
erties of whiCh, although complicated, are rather well 
known. 5-9 In this way it was possible to derive analytical 
expressions for the S matrix, the partial wave ampli
tudes, and the scattering phase shifts. The results have 
been reviewed recently by Frank, Land, and Spector. 10 

In the present paper the SchrOdinger equation with in
verse fourth-power potential is considered from a dif
ferent point of view. Since the Mathieu equation is in 
some sense a more complicated differential equation 
than the Schrodinger equation is, we prefer to treat the 
Schrodinger equation directly. Then we are able to 
derive in Sec. 2 some of the already known results in a 
more transparent way than before. 10 While in Sec. 2 we 
implicitly use some results from the theory of the 
Mathieu equation, a more general treatment is present
ed in Sec. 3 which constitutes the main part of this 
work. The emphasis is on the fact that we are concerned 
with a linear differential equation with two irregular 
singular points of rank one. Accordingly, we consider 
solutions in the form of integral representations of the 
generalized Laplace type, thereby modifying and extend
ing the work of Erdelyi. 11 We find exact expressions for 
the coefficients in the linear relation between the two 
fundamental sets of solutions defined relative to the two 
irregular singular points. These expressions, which 
contain some Taylor and Laurent series and finite de
terminants, are shown to be suitable for electronic 
computation under certain conditions. They may be used 
to compute the S matrix and the scattering phase shifts. 

There is a different method of treating the SchrOdinger 
equation by Fubini and Stroffolini, 12 which yields the co
efficients and the S matrix in terms of infinite 
determinants. 

2. MODIFIED DERIVATION OF EARLIER RESULTS 

The SchrOdinger radial equation with inverse fourth
power potential can be written 

y" + 2r-1y' + [k2 -l(l + l)r2 - f32 r -4]y(r) = O. (1) 

Here the potential parameter f3 and the momentum k are 
real in case of the scattering from a repulsive poten-

tial, and positive integer values of the angular moment
um 1 are particularly important. Equation (1) has two 
irregular singular pOints of the same species at zero 
and infinity. In order to obtain an equation which is 
more symmetric with respect to interchange of zero and 
infinity, it is advantageous to extract an appropriate 
power of r by 

y (r) = r-1/ 2J(r). (2) 

ThenJ(r) is a solution of the equation 

r2f" +rJ' + [k2r2 - (l +W - f32r -2]J(r) = O. (3) 

This equation has power series solutions 

(4) 

where the coefficients obey the three-term recurrence 
relation 

(5) 

with n="', - 2, - 1, 0, 1, 2, ..•. The value of the charac
teristic index IJ. is determined by the requirement that 
this infinite system of linear equations have a nontrivial 
solution, i. e., its determinant be zero. If this condi
tion is satisfied by IJ. = v, then it is satisfied by IJ. = - v 
too. Consequently, there are two solutions, 

(6) 

which are linearly independent provided that v is not an 
integer. Furthermore, the condition is satisfied if 
IJ. " v + 2m with moo • •. ,- 2, - 1,0,1,2, .. " but this 
simply corresponds to a different labeling of the coef
ficients e~n with respect to the index n and does not give 
anything new. The coefficient el) may be chosen arbi
trarily, the other coefficients are then defined uniquely. 
It is sometimes convenient to use the coefficients 

ern" (if3/k)ne~n (7) 

which obey the more symmetric recurrence relation 

[(IJ. + 2n)2 - (l + W]qn + i/3kqn_2 + i/3kqn+2 = O. (8) 

To obtain expressions for these coefficients and the 
characteristic index IJ. is a problem which has been in
vestigated extensively in the context of the Mathieu 
equation. 5-9 

The representation of the solutions (6) by Eq. (4) is 
not useful in so far as we cannot infer their behavior 
for small and large values of the argument r. By 
analogy with the Mathieu equation, we therefore con-
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sider four other solutions which are expansions in terms 
of products of Bessel functions: 

f!(r) = (CO)-! f; (-I)nCi':.Jn(kr)J+.,+/if3), (9a) 
n=_OD \r 

f:,,(r) = (Cii")-1 n~oo (-l)"Ci':.Jn(kr)J_v+n(i:) , (9b) 

f;;(r) = (CO,,)-1 ~ (-I)nC2~Jn(if3)J+v+n(kr), (9c) 
n=- r 

f:;(r) = {Cii
Vt 1 n~'" (- l)nC2':.Jn(~)J ... +n(kr). (9d) 

That these four functions are solutions of Eq. (3) and 
the coefficients are the same as in Eq. (S) can be seen 
if any of Eqs. (9) is inserted into Eq. (3) and the result
ing derivatives of the Bessel functions eliminated by 
means of the Bessel differential equation and the 
relation 

2xyJ~(x)J~+n(y) = - 2n(/l + n)Jn(x)J I.l+n(Y) 

From the properties of the Bessel functions the 
asymptotic behavior of the solutions (9) can easily be 
seen when r - 0 or r - QO, respectively: 

f+~(r) - (:~y/2 cos(i: - i 11- i), (Ha) 

r - 0, - 11/2 < argr - arg/3 < 37T/2, 

( 
2r)1 /2 ~if3 7T 7T) 

/ 1 (r) - - cos - + - 11- -
.11 lTi(3 r 2 4' (llb) 

r - 0, - 7T/2 < argr - arg/3 < 3lT/2, 

(Hc) 

r- 00, -IT < argr+argk <7T, 

(11 d) 

r - QO, - 7T < argr + argk < IT • 

When the power series expansions of the Bessel func
tions are inserted into Eqs. (9), bothf; .. (r) andf:;(r) 
are seen to have the form of r·v times an even Laurent 
expansion and therefore are proportional to one another 
and to the solutionf ... (r) of Eq. (4). Similarly, both 
f!(r) andf;;(r) are proportional to the solutionf+li(r). 
Furthermore, we observe by inspection of Eqs. (9) that 
for r=X, where 

x = .Ji(3/k, (12) 

the arguments of the Bessel functions become equal, 
and we have 

f;"(x) = f;; (X) , 

f: .. (X) = f:;(X). 
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(13a) 

(13b) 

Combining these facts, we find 

f.r;(r) = Rf;v(r) , 

f: .. (r) = Rf;;(r) , 

where, because of Eqs. (13), only one constant 

R = f: .. (x)/f;;(X) = f:;(x)/f;,,(X) 

appears. A factor exp(- i!lTII) may be extracted by 

R = R exp(- ihll) 

(14a) 

(14b) 

(15) 

(16) 

so that R is real (if f3, k, l, and 11 are), as can be seen 
if any of Eqs. (14) is considered for real values of r. 
Explicitly we have from Eq. (15) 

R= Co"L;:=_oo (_I)nC2':#n(~)J_vtnUi{:iii) (17) 
C;n::..", (- l)nC2~Jn(-.ff{:iii)J+v+n(.ffifk) • 

Taking suitable linear combinations of Eqs. (9a) and (9b) 
and returning to the original differential equation (1), we 
define two standard solutions 

(18a) 

y(2l(r) =(;~yl2i(Sin7TVt1 [exp(- ii 0f!(r) 

- exp(+ii 0f; .. (r~, (1Sb) 

which, according to Eqs. (Ua) and (llb), 
behavior at the origin, 

have a simple 

y(1)(r) -exp(- f3/r), 

l2l(r) -exp(+ f3/r). 

Using Eqs. (14) and (16) we find the alternative 
representation 

yC1 l(r) = (;~r 12 S~lTII [iif.r;(r) - k 1f_I;(r)], 

7T(3)I/2 1 
y<2l(r) 0= 2r Sin7TV i[R exp(- i7TII)f.~I(r) 

- ii-I exp(+ilTII)f.r;(r)], 

(19a) 

(19b) 

(20a) 

(20b) 

from which, by means of Eqs. (11c) and (lld), the be
havior at infinity can be found 

y(1)(r) _(tf2 2r s:nlTII {[ii exp (- ii 11) - k 1 
exp(+ii 11)] 

xexp (- i~ )eXP(+ikr) + [R exp(+ii 11) 

- kl exp(- ii 11)] exp (+ i~)exp(- ikr)}, (21a) 

Y(2)(r) - - . R exp - i- 11 - Wi exp +i- 11 ( f3)112 i {[- ~ 37T) - (37T J.~ 
k 2rSlfllTV 2 2 

xexp (- i~ )eXP(+ ikr) + [ii exp (- ii 11) 

- kl exp (+ii V)] exp (+ii) exp(- ikr)}. (21b) 

The S matrix and the scattering phase shift 15 are de
fined by 
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soo exp(2i6) = - (K+/K") exp(i7Tl) , 

where K+ and K- are the factors of exp(+ikr) and 
exp(- ikr) , respectively, in Eq. (21a). Accordingly, 
we have 

R2 - exp(+i7Tv) . 1 
Sooexp(2i6) «2 (. ~ exp[17T(l+"2- v)] 

l{ - exp - 111 v, 

or, in view of Eq. (16), 

S R2-1 ['(ll~] 
R2 _ exp(- 27Tiv) exp 111 +"2 - v, , 

(22) 

(23) 

(24) 

which is a formula appearing in the review article, 10 

apart from the factor exp(- i1lv) which evidently has been 
lost there. (This factor has been lost in a trivial way 
during preparation of the review article, for it is pres
ent in the formulas of both the original papers3,4 

quoted. ) 

3. GENERAL TREATMENT OF THE DIFFERENTIAL 
EOUATION 

A. Symmetry of the differential equation 

We want to consider solutions of the differential equa
tion (1) and are particularly interested in their behavior 
when r - 0 and when r - 00. Both these cases can be 
dealt with simultaneously if we take advantage of the 
symmetry of the equation with respect to zero and 
infinity. For we observe that if we introduce a new in
dependent variable x by 

xookr (orx=-kr) (25a) 

or by 

xooif3/r (or x= - if3/r) , 

then 

g(x) = f(r) = rl/2y(r) 

(25b) 

(26) 

is a solution of the same differential equation in either 
case. It therefore suffices to investigate the behavior 
when x - 00 of the solutions of the x equation 

x2g" +xg' +[x2 - (l +!-)2 - f32k2x-2]g(x) = 0 (27). 

B. Solutions of the x·equation 

In a similar way as in Sec. 2 we introduce two stan
dard solutions g+V(x) and g_v(x) by 

<>0 

g" (x) = 2:; d~,.x"+2n, j.J. = - v, + v, (28) 
n=_oo 

where v is the characteristic index as before and the 
coefficients d~n obey the recurrence relation 

[(j.J. + 2 n)2 - (l + Wld~n +d~n_2 - f32k2d~n+2 = O. (29) 

We take for the constants of integration 

do
v = dct = 1. 

The coefficients then satisfy the symmetry relation 

d:2n = (- f32k2)nd:2n' 

(30) 

(31) 

In order to investigate the behavior of the solutions (28) 
near infinity, we first extract a factor xA in view of 
greater flexibility and then consider integral represen
tations of the generalized Laplace type 

g(x) = -21 . xA ( exp(xt)v(t) dt. (32) 
111 Jc 
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Here v(t) is a solution of the t equation 

(t2 + l)vIV + (7 - 2.\)tv'II - (l +t - .\)(l- ~ + .\)v" - f32k 2v(t) = 0, 

(33) 

and the contour C has to be chosen such that the bilinear 
concomitant13 

exp(xt)[(t2 + 1)(x3v - x2v' + xv" - V'II) - 2t(x2v - 2xv' + 3v") 

+ 2 (xv - 3v') + (2.\+ 1)(tx2v - txv' + tv" - xv + 2v') 

- (l +!- + .\)(l + !- - .\)(xv - v')] (34) 

has the same value (identically in x) at both the termini 
of the contour. The parameter .\, which is quite arbi
trary, will be specified later as circumstances demand. 

C. Construction of an appropriate solution of the 
t-equation 

1. Solutions outside the unit circle 

The t equation (33) has two regular Singular points 
at t = i and t = - i and one irregular Singular point at 
infinity. Outside the unit circle, a solution may be 
represented by an appropriate power times an even 
Laurent expansion 

v" (t) = tA-".1cp" ([2), 
<>0 

cp,,(z) = 2:; b~nz-n, 
n=-OO 

where the coefficients obey the recurrence relation 

[(j.J. + 2n)2 - (l + W] (j.J. - .\ + 2n + 1)(j.J. - A + 2n + 2)b~n 

(35) 

(36) 

+ (j.J. - .\ + 2n - 1)(j.J. - .\ + 2n)(j.J. - .\ + 2n + 1)(j.J. - .\ + 2n + 2)b~n.2 

- f32k2b~n+2 = O. (37) 

This recurrence relation is satisfied if 

b" = r(j.J.-'\+1+2m) d" 
2m r(j.J. _ A + 1) 2m, 

(38) 

as may be seen by comparison with Eq. (29). Possible 
values of j.J. are therefore j.J. = + v and j.J. = - v, where v is 
the characteristic index as before. But since v,,(t) is a 
solution of a fourth order equation, there are two 
further significantly different values. In fact, the re
currence relation is also satisfied if all the coefficients 
with positive indices > 0 vanish and j.J. = A-I .\ - 2 .\ - 3 
.\ - 4 is one of the roots of the correspondin~ fourth ' 
order indicial equation. Consequently, there are two 
further solutions: 

<>0 

v A_1 (t) = 2:; b~2~t2n, 
n=O 

(39a) 

(39b) 

While here the coefficients bl) are arbitrary constants of 
integration, the coefficients b~2' which also are not de
termined by the recurrence relation, have to be chosen 
such that the series (39) converge outside the unit cir
cle. But then they converge also on and inside the unit 
circle and represent entire functions of t. Accordingly, 
there are two solutions of the t equation, one even and 
one odd function of t, which are analytic at both the 
regular Singular points too - i, +i. These solutions are 
not of interest since they do not contribute to the con-
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tour integrals we will consider. Their existence is 
relevant in so far as, at a later stage of our investiga
tion, it will suffice to consider two linearly independent 
solutions of the t equation instead of four. 

2. Solutions relative to the regular singular pOints 

The exponents of the t equation relative to any of the 
two regular Singular points t= - i, +i are 0,1, 2, ~-!. 
Provided that A is not half an integer, the solution does 
not contain logarithmic terms, even though all the ex
ponents apart one are integers. The solutions can 
therefore be written 

and will be considered as known numbers. Introducing 
2 

G(z) = ~BPJ(z), 
1=0 

u+(t) G(l + it), 

u-(t) = G(l- it), 

we have 

v+(t) = Ev-(t) +u-(t). 

There is also a relation 

u+(t) = (1- E2)v-(t) - Eu-(t), 

(52) 

(53) 

(54) 

(55) 

(56) 

v+(t) = F(l + it), It-i\ <2, (40) as may be seen by evaluating Eqs. (55), (56) and their 

uj(t) = Gj (l +it), It-il <2, }=O, 1, 2, (41) first derivatives at t= O. Similarly, we have 

and 

v-(t) = F(I- it), It+il <2, 

uj(t) = GJ(l- it), It+il <2, }=0,1,2, 

where 
.. 

GJ(z) = ~An{j)zJ+n, Izi <2, 

F(z) = ZA-1/2H(z), 

H(z)=I;An(A-!)Zn, Izi <2. 
... 0 

(42) 

(43) 

(44) 

(45) 

(46) 

Here we may choose the initial coefficients arbitrarily 
as 

Ao(q) = 1 for q= 0,1,2, A-!, 

AI (0) = 0, A 2(0) = 0, AI (1) = o. 
(47) 

(48) 

The other coefficients then are determined by the re
currence relation 

A()_(q+n-~+l+!)(q+n-~-l-i) A () 
n q - 2(q+n- Ad)(q+n) n-I q 

fJ2k2 

+ 2(q +n- A+1)(q +n)(q +n -l)(q +n - 2) An_a(q), 

[n>O ifq=2,A-!; n>l ifq=l; n>2 if q=O;A_l(q) 
=A_2(q) = 0]. 

(49) 

By Eqs. (40), (41) and (42), (43) we have two funda
mental sets of solutions, valid in different but over
lapping domains of the t plane. Any solution of one set 
may therefore be expressed as a linear combination of 
the solutions of the other set, in particular, 

2 

v+(t) = Ev-(t) + ~ B Juj(t). 
J=O 

(50) 

The coefficients E and B J may be determined by evaluat
ing this equation and its first three derivatives at t= O. 
They therefore appear as the solution of the system of 
linear equations 

J. Math. Phys., Vol. 15, No.9, September 1974 

v-(t) == Ev+(t) + u+(t), 

u-(t) = (1 - E2)v+(t) - Eu+(t). 

3. Multiplicative solutions and analytical continuation 

(57) 

(58) 

Let us consider a path in the t plane, in the form of a 
loop enclosing the two regular singular points t= - i, +i, 
such that it lies inside the region where v+(t) or v-(t) 
converges. If we start at some point P of this path with 
any of the appropriate solutions, say v+(t), and continue 
it analytically along the path until we arrive at the point 
P again, we generally do not reproduce v+(t) but obtain 
some linear combination of v+(t) and u+(t) , By taking 
appropriate linear combinations of v+(t) and u+(t), we 
now want to construct multiplicative solutions w(t) such 
that wet) is reproduced, apart from a constant factor, 
after the loop has been described. Considering the 
special loop shown in Fig. 1, we define at the point 

P 2: wet) = av+(t) +yu+(t). (59a) 

According to Eqs. (55), (56) we also have at 

P a : wet) = [aE +1'(1- E2) ]v~(t) + [a - yE]u-(t). (59b) 

Following the loop from P2 in the negative direction, the 
description of the circle around - i increases arg(l - it) 
by - 21Ti, so that we obtain at 

Pi: w(t) " raE + 1'(1 - E2)] exp[ - 21Ti(~ - !) ]v-(t) + (a - yE]u-(t) 

'" wit )(t). (60) 

Following the loop from P2 in the positive direction, the 
description of the circle around +i increases arg(l + it) 
by + 21Ti so that we obtain at 

Pa: w(t) = a exp[+ 21Ti(~ - !}]v+(t) +yu+(t). (61a) 

According to Eqs. (55), (56) we also have at 

P3: wet) =={aE exp[ + 21Ti(A- !)] +1'(1- E 2)}v-(t) 

+{a exp[+ 21Ti(A - m - yE}u-(t) 

'" W(3)(t). (61b) 

The constants a and I' have to be chosen such that the 
solutions at Pi and P3 are proportional to each other, 
say 

w(3)(t) = p exp(21Ti~)w(1}(t), (62) 

where the constant of proportionality has been denoted 
by p exp(21Ti~) for later convenience. Then Q and I' are a 
solution of the homogeneous system of linear equations 
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FIG. 1. t plane: path along which analyti
cal continuation is considered. The 
pOints P1 and Ps are to coincide but have 
been drawn separately to indicate the 
termini of the path. Furthermore, the 
straight lines may be assumed to coin
cide with the imaginary axis. 

E[p - exp(21Ti~)]a + (1- E2)(P + 1}y= 0, 

- (P +l)a +E(p- exp(- 21TiA)}y=0. 

(63a) 

(63b) 

The requirement that the determinant be zero leads to 

p2 + 2[1- 2(E COS1TA)21p + 1 == o. (64) 

The roots PI and P2 of this equation obey the relations 

Pi + P2 == - 2[1- 2(E COS1T,X)2], (65) 

P!P2 == 1. (66) 

Because of the last equation, the two roots may con
veniently be represented by means of one (not neces
sarily real) parameter v in the form 

Pi == exp(- 21Ti v), P2 == exp(+ 21Ti v). 

Then we have 

and, by comparison with Eq. (65), 

(67) 

(68) 

(69) 

The further discussion may be restricted to one choice 
of p if all the quantities depending on p carry an index 
/J. corresponding to p == exp(- 21Ti/J.). The name v for the 
new parameter of Eqs. (67) is appropriate in view of 
the fact that it is the characteristic index. For we are 
constructing two functions W,.(t) which, according to 
Eqs. (62) and (67), obey the circuit relations 

(70) 

with /J. == v or /J. == - v, respectively. But as shown in Sec. 
3C1, there are just two solutions which are not single
valued and obey the same circuit relations with v equal 
to the characteristic index. It should be noted, however, 
that the quantity v here is defined by Eqs. (67) or (69) 
mod 1 only, while the characteristic index has been de
fined mod 2. This fact is reflected in the sign ambiguity 
arising if we want to take the square root of Eq. (69). 
This sign has to be chosen such that the functions w,. (t) 
obey also the appropriate half-circuit relations suggest
ed by Eq. (35), namely 

w,.[exp(ilr)t]== exp[i1T(X- /J. -l)]w,.(t). (71) 

Equation (59b) may be Simplified by means of Eqs. (63) 
so that we have at P2 
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W,.(t)== 

a,.v+(t)+y,.u+(t) if It-il <2, 

COS1TX exp[i1T(X- /J. -I)}{G',. exp[21Ti(A- i)]v-(t) +y,.u-(t)} 
COS1T/J. 

if It + i I < 2. (72) 

In order to check the half-circuit relation (71) we 
evaluate Eq. (72) for t = 2i and t = - 2i assuming that 
arg(l + it) = arg(l- it) == 0 on the imaginary axis near P2' 

By means of Eqs. (40), (42), (45), (53), (54) we find 

w,. (2i) == a" exp[i1T(X - i)]H(-l) + y,.G(-l), (73a) 

. E COS1TX . 
w,.(-2t)== exp[-t1T(X-/J.-1)] 

COS1T/J. 

x{a,. exp[i1T(A- i)]H(-l) +y,.G(-l)}. (73b) 

By comparison with the half-circuit relation (71) .we. con
clude that the equation determining the characterIstic 
index is 

cos1Tv=EcoS1TA (74) 

rather than Eq. (69). Using Eq. (74) the ratio of the co
efficients G',. and y,. may be found from any of Eqs. (63) 
to be 

a,./y,. = exp(- i1T[A- il) Sin1T(A- /J.)/ COS1TA. (75) 

If we choose arbitrarily the normalization 

y,. exp(ih(A- /J. -1])r{i - A) cos1TVsin1T(X- /J.) (76) 

in view of later convenience, all the quantities in Eq. 
(72) are known. The analytical continuation of W,.{t) 
for larger values of I tl is, according to the discussion 
following Eq. (70), proportional to the function V,.(t) 
given by Eq. (35). We then obtain finally 

rei - x) exp[ + i(1T/2)(~ - /.L -1) l{exp( - i1T(X - i) ]v+(t) 

+ . COS1TA u+(t)} if It- il <2 
Slll1T(X- /J.) , 

W,.(t)= r(i- A) exp[-i(1T/2)(A-P. -l)]rxp[+i1T(X- i)]v-(t) 

+ . CO(:1TA )u-(t)} if It+il <2, 
Slll1T - /J. 

if It I >1. (77) 

Here the constant of proportionality 

_ r(i - A)r(X - g)[sin1T(A - IL} H(- 1) + COS1TX G(- I}] 
.1,.- 1T2A=,.-1cf>,.(-4) 

(78) 

may be checked by comparing the first and last line of 
Eq. (77) for t== 2i. The powers are defined such that 
near the pOint P 2 of Fig. I we have arg(l - it) == arg(l + it) 
== 0 if t is on the imaginary axis while I t I < 1, and argt 
== 0 if t is real and positive. 

D. Contour integral solutions of the x·equation 

1. Suitable contours 

The t equation has one irregular singular point at in
finity. It can be shown that there are four linearly in-



                                                                                                                                    

1456 Wolfgang Buhring: Schr6dinger equation with r-4 potential 1456 

+i. ) +i. 

~ ~ C, C2 C3 
-i. -i. ) -i- -I· 

b c 

FIG. 2. t-plane: contours suitable for the integral 
representation. 

d 

dependent solutions which, when I t I - 00, behave 
asymptotically as r1+<1/2)"exp(2ev13kt) with €= - i, 1, i, -1, 
respectively. This behavior is dominated by the kernel 
exp(xt) of the integral representation (32) so that the 
bilinear concomitant (34) tends to zero when I t I - 00 in 
appropriate sectors of the t plane depending on argx. 
Consequently, there are contours, suitable for the in
tegral representation, which start somewhere at in
finity, enclose at least one of the regular singular 
points, and return to the starting point at infinity. Some 
examples of contours appropriate for our purpose are 
shown in Fig. 2. 

2. Solutions relative to the irregular singular point at 
infinity 

Weare going to define two standard solutions of the 
x equation relative to the irregular singular point at 
infinity. This can be done in analogy to the definition of 
Hankel functions, since for f32k 2 - 0 the differential equa
tion reduces to the Bessel equation of the order l + j. 
For our purpose, however, it is more convenient to use 
a different normalization. Our standard solutions are 

g!1)(x) = 2~i x" f exp(xt)w+(t) dt, - 71/2 < argx < 71/2, 
lCI 

(79a) 

g(2)(X) = -21 
.x"l exp(xt)w-(t) dt, - 71/2 < argx < 1T/2, 

1Tt C~ 

where 

w+(t) 

= r(j- X) exp[- i(1T/2}x]v+(t} } 

= r(%- X) exp[- i(1T/2)X](1 +it)"-1I2H (1 + it) 

w-(t} 

= r(t - X} exp[ +i(1T/2)>..]v-(t} } 

= r(t - X) exp[+i(1T/2)>..](1- it)"-1I2H(1- it) 

(79b) 

if It-il <2, 

(80a) 

if It+il <2. 

(80b) 

Here the powers are defined such that arg(1 - it) = arg(1 
+ it) = 0 when t is on the imaginary axis while I t I < 1. 

The solutions (79) may be continued analytically into 
larger sectors of the x plane by rotation of the contour. 
In each case the possible angles of rotation are limited 
by the presence of the other regular Singular point so 
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that gO I(X) may be defined in the sector - 1r < argx < 21T 
andg(2l(x) in the sector - 21T <argx <1T. If the Taylor 
series are inserted for H(1 + it) and H(1 - it) and the 
integrals performed term by term, then the asymptotic 
expansions of the standard solutions for I x I - 00 are ob
tained in the usual way: 

g<1)(x) - exp(- i1T/4)x-1I2 exp(+ix):6 an(ix)"", 
,,=0 

- 1T < argx < 21T, (8Ia) 
., 

g(2l(x) - exp(+ i1T/ 4)X-I / 2 exp(- ix):6 an(- ix)"", 
,,=0 

- 21T < argx < 1T. (8Ib) 

Here the coefficients 

a,,=A,,(X- t)r(x+t +n)/r(x+t}, (82) 

which do not depend on X, can be obtained from the 
recurrence relation 

(n + l)(n -l- 1) f32k 2 

a" = 2n a,,_1 + 2n a,,_3 (83) 

with ao=1, a_l=a_2=O. 

3. Laurent series solutions 

Let us consider the integral representation (32) with 
the contour C3 and v(t) = r(/l- A+ 1)vl'(t), where argt= 0 
if t is real and positive. Inserting the Laurent series 
for vl'(t) according to Eqs. (35), (36) and integrating 
term by term, we find that the result is just the function 
gl'(x) defined by Eq. (28). The standard solutions (28) 
therefore have the integral representation 

g,,(x)=-21.x"r«(J.-X+1) ( exp(xt)vl'(t}dt, 
1Tt lC

3 

- 1T/2 < argx < 1T/2, (84) 

for /l = v, - v. The analytical continuation for other 
sectors may be obtained by rotation of the contour by an 
appropriate angle. Therefore Eq. (28) defines g I' (x) for 
arbitrary values of argx. 

4. Linear relations between the solutions 

Since we are concerned with a second order differen
tial equation, the four standard solutions lll(x), /2)(x), 
g~(x), g_,,(x) we have introduced so far are not indepen
dent, but linear relations persist between any three of 
them. In order to determine the coefficients we con
sider the integral representation (32) with the contour 
Cs and the function wl'(t) of Eq~ (77) inserted for v(t). 
Then, according to Eq. (84), the integral is equal to 
A~I'(x). Now the contour C3 may be deformed into the 
contour {5s which is just the sum of the contours C j and 
Ca, apart from a straight line, connecting them at in
finity, which does not contribute to the integral (Fig. 2). 
According to Eqs. (79), (80), the integrals along the 
contours C j and C2 give g(ll(x) and g(2)(X), respectively, 
multiplied with the appropriate factors following by 
comparison of Eqs. (80) with the singular parts of Eq. 
(77). We therefore obtain 

A,.g I' (x) '" exp[ - i(1T/2)/l ]g(ll(x) + exp[ + i(1T/2)/l ]g(2)(X), 

/l = v, - v. (85) 
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Then, provided that the characteristic index II is not an 
integer, we also have 

g(1l(x) 2'~ {exp[ + i(1T/2) IIJ~."g.,,(x} 
t sm1TII 

- exp[- i(1T/2) II] ~+IIg+,,(x)}, 

g(2)(x) - 2:-~ {exp[ - i(1T/2) 1I)]~ ... g.,,(x) 
z sm1TII 

5. Circuit relations 

From Eq. (28) the circuit relations for g,,(x) and 
g.,,(x) are known to be 

(86a) 

(86b) 

g,.[ exp(i1Tm)x J = exp(i1TmJ.J.)g,. (x), (87) 

where m is any integer and J.J. = II, - II. Then, by means 
of Eqs. (85)-(87), the circuit relations for g(1)(x) and 
g(2)(X) may be obtained: 

(1)[ ( .)] sin(l- m)lTlI <1>() sinm1TII (2)() g exp mm x = . g x - . g x, 
SIn1T II SIn1T II .. 

(88a) 

g (2)[exp(m1Ti)x] sinm1T1I (1)() sin(1 + m)1T1I (2)() 
sinlTlI g x + sin1TII g x. 

(88b) 

These equations extend the definitions of the functions 
g<tl(x) and g(2)(X) and allow one to obtain their asympto
tic expansions for values of argx other than those con
sidered in Sec. 3D2. 

6. The case when the characteristic index is an integer 

It may happen for particular values of f32k2 that the 
characteristic index II is an integer. Then gw(x} and 
g.,,(x) are no longer linearly independent, so that Eqs. 
(86) become meaningless. But the linear relation (85) 
and the coefficient ~,. (where J.J. = II, - II) remain relevant. 
The Eq. (78) defining ~,., however, breaks down when
ever A is half an integer or A - J.J. is an integer. Here we 
see one advantage of having introduced the arbitrary 
parameter A by extracting the factor x~ in front of the 
Laplace integral. For otherwise, i. e., if A = 0, Eq. (78) 
would break down whenever J.J. is an integer. But~,. is in 
fact independent of A, so we may choose any convenient 
value, e. g., A= t. Then~" remains well-defined by Eq. 
(78) even if J.J. is an integer. 

We do not want to explain the other aspects of the case 
when J.J. is an integer, which is quite analogeous to the 
case of Bessel functions of integer order. 11 

E. Solutions of the r-equation 

1. Solutions relative to the singular points 

The solutions g(1)(x) and g(2)(x) may now be used, ac
cording to Sec. 3A, to define two fundamental sets of 
solutions of the r equation (1) relative to the irregular 
singular points at the origin and infinity, respectively, 

y<1 )(r) = i(~y 12g (1) ~ eXP(ilT/29 ' (89a) 

y(2)(r) = (~r 12g(2)(~ eXP(i1T/2~ , (89b) 
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(90a) 

(90b) 

They have the asymptotic expansions 

y(1)(r) -exp(- f3/r) t an(- !.)n, - 31T/2 <argr/f3<31T/2, 
"=0 f3 

r-O, (91a) 

y(2)(r) -exp(+f3/r) L; an - , '" (r)" 
n=O f3 

-11'/2 <argr/f3< 51T/2, 

r-O, (91b) 

r- oo , (92a) 

y (4) (r) -.! exp( - ikr) t an (- ikr)"n, - 21T < argkr < 1T, 
r n=O 

r- oo , (92b) 

with the coefficients an from Eq. (83). 

2. Linear relations between the solutions 

The linear relations persisting between any three of 
the solutions (89), (90) may be obtained by means of the 
functions g,.(x), which obey the symmetry relation 

g,,(~ exp(i1T/2~ =exp[i(1T/2)J.J.]({3k)"g.,,(kr), 

J.J. = II, - II. (93) 

Using Eqs. (85), (86), (89), (QO), and (93) the coeffi
cients of the linear relations 

y(O(r) =D1sY(3)(r) + D14y (4)(r) , 

y(2)(r) =: D2sY(3)(r) +D
2
4Y(4)(r) 

are found to be 

1 ( 1 )(f3)1/2 D13= 2sin1TII R- Ii Ii exp(-i1T/4), 

(94a) 

(94b) 

(95a) 

1 (R exp(+ i1TII) _ -R1 exp(- i1l'1I~ Lk(3)1/2 exp(+i1T/4), 
2 sin1T II '/ \; 

(95b) 

2 s;nlTII (R exp(- in) - ~ eXP(+ilTlI»)(t y2 exp(+i1T/4), 

(95c) 

D24 =- D13, 

where 

(95d) 

R = [(3k exp(i1T/2)]-I' Aj ~v= exp[- i(1T/2) IIJR. (96) 

This quantity is identical to the quantity R of Eq. (17), 
as may be seen by comparing Eqs. (94)-(96) with Eqs. 
(21). But we have obtained here an entirely different 
analytical expression for it. 
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The case when II happens to be equal to any integer or 
zero requires special attention. Then we have R = 1 or 
R = - 1 so that the expressions (95) are undefined and 
have to be replaced by their limiting values. 

3. Integer values of the characteristic index 

If 11= 0 we have R = 1 evidently by Eq. (96). It will now 
be shown that R = 1 or R = - 1 if v is equal to any integer 
*" O. For this purpose it is necessary to consider the way 
of generating the coefficients of the Laurent series by 
means of continued fractions, a method well-known from 
the Mathieu equation. Let us introduce the "right" and 
"left" ratios of the coefficients 

Rm = d~",/ d~m_2 
and 

L -dlL fd lL m - -2m-2I· -2m' 

With the abbreviation 

Vm = (j1. +2m)2 - (l +W 

(97) 

(98) 

(99) 

it then follows from the recurrence relation (29) of the 
coefficients that 

-1 -1.xL rh2 
Rm= 2 2 =-- , 

Vm - 13 k Rm+1 V m + V m+1 + V m+2 + ... 

L = j32k 2 = &k2 ~ rh2 
m v..m-1 + Lm+1 v..m-1 + V_m_2 + V-m_3 + ... 

According to Eqs. (97), (98) we have 

RoLo= 1. 

(100) 

(101) 

(102) 

This condition of consistency is satisfied by the ratios 
Ro and Lo computed from the continued fractions (100), 
(101) only if j1. has the value of a characteristic index 
(j1. = v, - v mod 2). Let us first assume that this value 
j1. = 2M is an even integer. Then we have the symmetry 
relation 

(103a) 

and therefore 

(104a) 

It then follows that, with E = + 1 or - 1, 

inspection of Eqs. (95), (96), we finally want to show 
that, if f3k and 1 are real parameters, then odd integer 
values of the characteristic index cannot occur. For if 
we assume that v be an odd integer, say 11= 1, we have 
Lo = - j32k2Ro from Eq. (104b), where the continued frac
tions Lo and Ro are real in this case according to Eqs. 
(99)-(101). It then fOllows that RoLo= - j32k2R~ is negative 
real. But this result violates the consistency condition 
(102), and therefore our assumption that the charac
teristic index might be an odd integer is wrong. Never
theless, values of v very close to the odd integers may 
occur. In fact, numerical computations show that the 
characteristic index, considered as a function of 1 with 
f32k2 > 0 fixed, has maxima and minima some of which 
are extremely close to an odd integer. Even integer 
values of v, on the other hand, do occur. In their 
neighborhood v may become complex, its real part then 
being equal to that integer. 

F. Computational aspects 
The formulas we have obtained for v, AIL' and Rare 

relatively convenient for electronic computation. We 
have to evaluate twenty Taylor series, the coefficients 
of which can be computed reCUrsively, for a value of the 
variable equal to half the convergence radius. Sixteen of 
these series represent the coefficients of the system of 
linear equations (51) which has to be solved, four addi
tional series are needed in the evaluation of H( - 1) and 
G(- 1). Finally, two Laurent s"ries ¢IL(- 4), j1. = v, - v, 
have to be computed for a value of the variable equal to 
four times the convergence radius of the principal part. 
The coefficients of these Laurent series or the related 
coefficients d!{m obey a three-term recurrence relation 
and may be evaluated by means of continued fractions: 
The ratios of coefficients Rm and Lm are evaluated for 
the maximum value of m required by means of the con
tinued fractions appearing on the right-hand side of 
Eqs. (100), (101). The ratios for the lower values of m 
then are obtained recursively using the left-hand part of 
Eqs. (100), (101). Finally the coefficients themselves 
are obtained recursively by 

(107) 

d:~M_2n = E(ij3k)2nd:~M+2n 

or, by means of Eq. (31), 

d:~M-2n = E(ij3k)2Md:~J'1_2n' 

(105a) starting with m = 1 and db = 1. 

(106a) 

If, on the other hand, j1. = 2M + 1 is an odd integer, Eqs. 
(103a)-(106a) have to be replaced by 

V_M+n = V_M-n_i> 

L+M+n = - j32k2R_M+n' 

d:~i2n = E(i{3k)2n-1d::;!2n_2, 

d:~;:2n = E(ij3k)2M+1d:~J'1:~n+2' 

(103b) 

(104b) 

(105b) 

(106b) 

respectively. By means of Eqs. (106) it is not difficult to 
show that R = E(- 1)" whenever the Characteristic index v 
is an integer'" O. Whether f = 1 or f = - 1 depends on the 
values of the parameters land j32k 2• There are these two 
possibilities, in analogy to the existence of even and odd 
periodic solutions of the Mathieu equation. 

In order to avoid some obscurity which might arise by 
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If the system of linear equations (51) is solved by 
Cramer's rule and use is made of the fact that the deter
minant D of the system is, apart from the sign, a 
Wronskian of the t equation equal to 

_D=(A_~)(A_i)(A_~)2-A+9/2, (108) 

then an explicit expression for the characteristic index 
II is obtained in the form 

COS1TV - D1 COS1TA 2A- 9/2 
(A- t)(A - t)(A- %) , 

where 

F(l) 
- F'(l) 
F"(l) 
- F"'(l) 

Go(l) 
Go(l) 
Go(l) 
Go'(l) 

G1(1) 
Gf(l) 
G1'(l) 
Gj"(l) 

G2(1) 
G2(l) 
G2'(1) 
G2"(l) 

(109) 

(110) 

Here the value of the finite determinant D1 enters, the 
elements of which are Taylor series. This method of 
generating the characteristic index therefore seems to 
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be advantageous as compared to one of the usual methods 
which requires the computation of an infinite 
determinant. 

A simple but sensitive check of the equations them
selves and of the accuracy which can be achieved if they 
are evaluated numerically is provided by the parameter 
A. This parameter, which is quite arbitrary except that 
it must not be equal mod 1 neither to ~ nor to the 
characteristic index, influences the computation signi
ficantly, but the final results for II, A", and ii do not 
depend on it. Therefore computations with different val
ues of A may serve for checking. 

By inspection of the relevant equations and on the 
basis of several numerical computations (performed 
with real values of the parameters l> 0 and [32k2) we 
arrive at the following conclusions concerning the 
choice of A and of II [which is defined by Eq. (109) mod 
2 only J. In order to obtain an accurate value of II even if 
1 is not small (i. e., larger than something like 3), an 
integer value near - Il + ~ I should be chosen for the 
parameter A. This is important also in view of the fact 
that the accuracy of R computed by any method depends 
on the accuracy of II. The coefficients of the Laurent 
series can be computed accurately only if II is chosen 
such that its real part is as close to 1 + ~ as is possible. 
For computing the A" the parameter A should be near 
- Il + ii, but sufficiently different from + II mod 2 and 
from half-integer values. 

If these points are observed, accurate results may be 
obtained. If 1 is not too large, both the methods of com
puting R give equally accurate values, although the con
vergence of the series is faster in the conventional 
formula (17). But if II happens to be very close to an 
integer, the values of R computed by the new method 
are often more accurate, since then the conventional 
formula is very sensitive to errors of II (via the Bessel 
functions of nearly integer negative index). If 1 becomes 
larger, however, the conventional formula is superior 
since the terms with H(- 1) and G(- 1) in A" may inter
fere destructively so that significant figures are lost. 
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Nevertheless the new method still gives accurate results 
if the scattering phase shifts is all what is wanted. For 
as the numerical accuracy of I R I decreases, it becomes 
larger and larger compared with 1 so that, according to 
Eq. (24), the phase shift becomes more and more in
dependent of R. 

Note added in proof: Using a quite different and 
modern method by Naundorf, 14 we find . 

A" =0 2~ a,/r(jJ. +i +n), 
n=O 

with the coefficients an from Eq. (83). By means of Eq. 
(96) we then may obtain another expression for the im
portant quantity R, which is remarkable because of its 
SimpliCity and because of the fact that the coefficients 
of the Laurent series do not enter. 
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By formulating the conditions for dynamical symmetry mappings directly at the level of the 
dynamical equations (which are taken in the form of Newton's equations, Lagrange's equations, 
Hamilton's equations, or Hamilton-Jacobi equation), we derive new expressions for dynamical 
symmetries and associated constants of the motion for classical particle dynamical systems. All 
dynamical symmetry mappings we consider are based upon infinitesimal point transformations of the 
form (a) Xi =xi+8xi [8xi=~i(x)8a] with associated changes in the independent variable t (path 
parameter) defined by (b) 8t = [J2</>[x (t)] dt+c} fia. A generalized form of the related integral 
theorem (a method for obtaining constants of the motion based upon deformations of a known 
constant of the motion under dynamical symmetry mappings) is obtained. We take the "Newtonian 
form" of the dynamical equations to have a coordinate-covariant structure with forces defined by a 
general polynomial in the velocities and obtain dynamical symmetry conditions for all such systems. 
For the special case of conservative systems the related integral theorem is applied. Based upon 
Lagrange's equations with L =L (x i ,x i) we find the conditions for dynamical symmetry mappings 
may be expressed in the form 

(c) (%xi)[fiL + L(d/dt)(fiOJ- (djdt)(%}ci)(fiL + L (d/dt) (fit)] =- 2¢ .j[(oLjoii)xi -LJ fia. 

From this form we obtain a new formula for concomitant constants of the motion: (d) [o(fiL)/oJcfJJcf 

- 8L = k. By use of the related integral theorem such constants of the motion can be expressed as 
deformations of the energy integral under the dynamical symmetry mappings defined by (c). A short 
derivation of the Noether identity is given which is independent of the integration processes of 
Hamilton's variational principle. For mappings of the type (a), (b) "Noether type" symmetries and 
associated constants of the motion are formulated. For a conservative dynamical system with 
L =(1I2)gijx ix:i - V (x) we find such Noether symmetries are basically conformal motions, while 
those derived from ( c) are basically projective collineations. For such systems the constan ts of the 
motion (d) are evaluated and shown in general to differ from those obtained from the Noether 
method. We show for conservative dynamical systems that the formulation of dynamical symmetry 
mappings directly at the level of the Hamilton-Jacobi equation leads to the Noether symmetry 
conditions. Dynamical symmetry conditions are formulated for Hamilton's equation in phase space 
and shown to be more general than canonical transformations. The formulation of the related integral 
theorem in phase space is found to be a generalization of Poisson's theorem. For systems with 
H(x A ), A = I , ... ,2n, it is an immediate observation that fiH induced by a symmetry mapping is a constant 
of the motion. Application to the isotropic harmonic oscillator shows both symmetric tensor and angular 
momenta constants of the motion are obtained in this manner. An additional constant of the motion 
OA ~ A - 2¢(x A ) is shown in general to be a concomitant of a phase space symmetry transformation. 

1. INTRODUCTION 

We consider in this paper dynamical symmetries and 
associated constants of the motion for classical particle 
dynamical systems. For such systems a dynamical 
symmetry is a transformation which maps the set of all 
dynamical paths into itself. 1 It is well known from the 
work of Noether2.3 how conditions for dynamical sym
metries may be derived by use of the formalism of 
Hamilton's variational principle and that certain con
stants of the motion are concomitant with the existence 
of such dynamical symmetries. It is also well known 
from the work of Poisson that certain types of canonical 
transformations associated with the existence of con
stants of the motion may be interpreted as dynamical 
symmetry mappings at the level of Hamilton's 
equations. 4 

It is a main purpose of this paper to give a unified 
proof of the above mentioned related integral theorems 
which will include all theorems of this type previously 
proven for specific classes of dynamical equations in 
both configuration space and phase space, and where 
applicable to compare various aspects of this method 
with the more familiar Noether and Poisson methods 
for obtaining constants of the motion. 

In several recent papersS-
9 the present authors de

veloped an additional symmetry-based method for ob
taining constants of the motion. This method, which was 
published in various forms as "related integral 
theorems," provides a means for deriving additional 
constants of the motion based upon the deformations of 
a known constant of the motion under dynamical sym
metry mappings. 

We shall also show that by formulating the conditions 
for dynamical symmetries directly at the level of the 
dynamical equations (which we take in the form of New
ton's equation, Hamilton's equations, Lagrange's equa
tions, or the Hamilton-Jacobi equation) that we obtain 
certain new and interesting relationships between 
dynamical symmetries and constants of the motion. 

Throughout this paper we shall base our dynamical 
symmetries upon the existence of infinitesimal point 
transformations (3.1). Any accompanying transforma
tion (3.3) in the independent variable (dynamical path 
parameter) will be treated as a transformation which is 
correlated to the point mapping being considered. For 
the most part we shall also limit our discussions to con-
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stants of the motion which have no explicit dependence 
upon the independent variable. We recognize that such 
mappings and/ or constants of the motion are not the 
most general allowed in the traditional Noether and 
Poisson methods; however, they suffice for the pur
poses of explaining and comparing the various ap
proaches to obtaining dynamical symmetries and con
stants of the motion. The time-dependent theory as 
well as field theory analogs will be considered in a 
later paper. 

In Sec. 2 we first define the class of dynamical sys
tems to be considered in terms of a system of general 
second order ordinary differential equations (2.1). 

In Sec. 3 we mathematically formulate the conditions 
(3.13) for the existence of a dynamical symmetry map
ping directly at the level of the above-mentioned 
differential equations. 

In Sec. 4 we prove a generalized related integral 
theorem for the class of dynamical systems considered. 
We base this derivation directly upon the use of infini
tesimal point mappings (with associated changes in path 
parameter) thereby eliminating the added conceptual 
complications associated with the Lie derivative ap
proach used in previous formulations. 

In Sec. 5 we specialize the general form of dynamical 
equations (2.1) to be of "Newtonian form" (5.1). These 
equations, which are taken to have a manifestly coordi
nate-covariant structure, embrace many important 
types of dynamical systems in that they allow for the 
inclusion of rather general velocity dependent forces. 
Based upon these equations we obtain a general form for 
the dynamical symmetry conditions as a direct applica
tion of the method explained in Sec. 3. As a detailed 
illustration we further specialize the Newtonian form of 
the dynamical equations to those of a conservative 
system. The specific symmetry conditions obtained 
[(5.15), (5.16)] indicate the dynamical symmetry map
pings are basically projective collineations subject to 
additional restrictions dependent upon the form of the 
potential energy. By application of the related integral 
theorem to such systems it is found that the deforma
tions of the energy integral with respect to the sym
metry mappings generate additional quadratic constants 
of the motion. (For the Kepler problem and the three
dimensional isotropic simple harmonic oscillator the 
well-known Runge-Lenz vector and symmetric tensor 
constants of the motion respectively have recently been 
obtained by this method, 7) 

In Sec. 6 we specialize the basic dynamical equations 
(2.1) to the form of Hamilton's equations in phase 
space. 10 The accompanying specialization in the dynam
ical symmetry conditions (3.13) results in symmetry 
conditions (6.4) which in general lead to noncanonical 
dynamical symmetry mappings. 11 From the form of 
these symmetry conditions two methods for formulating 
associated constants of the motion are immediately ob
vious. The constants of the motion (6.6) resulting from 
one method are shown to be a direct consequence of the 
invariance of the divergence-free character of the inte
gral curves of a Hamiltonian system under dynamical 
symmetry mappings. The constants of the motion (6.13) 
given by the second method result from the deformations 
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of the Hamiltonian of the system under the dynamical 
symmetry mappings. The constants of the motion asso
ciated with this latter approach are also shown to be 
obtainable from the phase space formulation of the 
related integral theorem. 

It is also shown that the phase space form of the re
lated integral theorem is a generalization of the well
known Poisson'S theorem on constants of the motion. 

A simple application of this (phase space form of) 
related integral theorem to the three-dimensional iso
tropic harmonic oscillator shows that the well-known 
symmetric tensor and angular momenta constants of 
the motion result from symmetry-induced deformations 
of the Hamiltonian. 

In Sec, 7 we specialize the general dynamical equa
tions (2.1) to the form of Lagrange's equations, The 
accompanying specialization in the conditions (3.13) for 
dynamical symmetry mappings results in symmetry 
equations (formulated directly at the level of Lagrange's 
equations) which may be reexpressed in a new form 
(7.6) which displays a structure similar to Lagrange's 
equations, 

From this form of the symmetry equations it is a 
simple matter to obtain a new formula (7.10) for as
sociated constants of the motion, An investigation into 
the nature of these constants of the motion shows they 
may be reexpressed as the deformation of the energy 
integral under the above-mentioned dynamical sym
metry mappings, Thus for this case we find the essen
tial mechanism of the related integral theorem is 
actually contained within the equations which determine 
the conditions for a dynamical symmetry mapping. Two 
specific Lagrangians are chosen to illustrate consisten
cy with results obtained when the dynamical equations 
were taken in Newtonian form and in Hamiltonian form, 

In Sec, 8 we first give a short derivation of Noether's 
identity (8,5) which is independent of the integration 
processes of Hamilton's variational principle, 3 We then 
make a comparison between the "Noether symmetry 
conditions" (8,6) based upon this well-known identity 
and the dynamical symmetry conditions (7.6) which 
were formulated directly at the level of Lagrange's 
equations, We find that even for the relatively simple 
case of a conservative dynamical system these two 
approaches lead to considerable differences in sym
metries. For such systems we find that the Noether 
symmetries are fundamentally conformal mappings 
whereas the dynamical symmetries formulated directly 
at the level of Lagrange's equations are basically 
projective, Therefore the intersection of these two 
symmetry types is limited to homothetic mappings, 

A comparison of the constants of the motion (7,10), 
(8.12) associated with these two approaches shows that, 
in general, they differ. For example, in the case of the 
three-dimensional isotropic harmonic oscillator we find 
the angular momenta first integrals are given by the 
Noether formula (8,12) and the symmetric tensor 
quadratic first integrals are given by the new formula 
(7.10). Hence the two methods of obtaining constants of 
the motion complement each other in this application. 

In Sec. 9 we consider the problem of proving that the 
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Noether symmetry mapping conditions (as formulated 
from the Noether identity) can also be formulated di
rectly at the level of the dynamical equations. We show 
for a conservative dynamical system that the demand 
that the set of solutions of the Hamilton-Jacobi equation 
maps into itself leads to the Noether symmetry condi
tions. Because the Hamilton-Jacobi equation is a rep
resentation of the dynamical equations in the transfor
mation theory of mechanics we may thereby interpret 
the Noether mappings as dynamical symmetry mappings 
which are also demonstrable at the level of the dynam
ical equations. It then also follows that the constants of 
the motion associated with the Noether symmetries can 
be considered as concomitants of dynamical symmetries 
based upon the Hamilton-Jacobi equation. 

2. DYNAMICAL SYSTEMS 

Consider a system of n second order differential 
equationsl2 

Ei (Xl, ••• , x";.XI, ••• , l"; Xl, ... , x") = Ei (x, x, x) = 0, 

j;;:1, ••. ,n, (2.1) 

where 

'I _ dxl "1 = tPXI 
x=Tt, x- dt2 • (2.2) 

We observe that Newton's equations, Lagrange's equa
tions, and Hamilton's equations (mentioned in the intro
duction) are of the form (2.1).13 

It is assumed that equations (2.1) satisfy the condi
tions for solvability of Xi in terms of xi's and Xi,S. 

We represent the solutions of (2.1) in the form 

Xi = P (aI, •.• ,a";b l , ••• ,b";t) = jI(a, b, t), (2.3) 

where the a i and bi are 2n constants of integration. For 
specific values of these 2n constants equation (2.3) will 
define a curve y. The totality of curves so obtained will 
be denoted by r. The coordinates Xl of a particular 
curve yare denoted by 

x~=fi(a,., b,., t). (2.4) 

In this paper we consider first integrals of the differ
ential equations (2.1) which are of the form 14 

l(x ,x) = const, (2.5) 

where it is understood that the left side of (2.5) when 
evaluated along any solution curve YE r reduces to a 
constant h,.. This is indicated by writing 

(2.6) 

It is important to note that the value of the constant hy 
will in general vary from one solution curve to another. 

3. DYNAMICAL SYMMETRIES 

We wish to obtain mappings of the family r of inte
gral curves of (2.1) such that the family r is mapped 
into itself in that r - r = r. Such mappings will be 
called dynamical symmetries. For purposes of this 
paper we shall limit these mappings to infinitesimal 
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point transformations of the form 

Xi == Xl + 6x', 6Xl = ~'(x)6a (6a= infinitesimal), 
(3.1) 

with associated change in curve parameter t based on a 
scalar cp(x) such that' 

dT==dt{1+2cp[x(t)]6a}. (3.2) 

The notation cp[x(t)] indicates the function cp is to be 
evaluated along a solution curve. Hence we obtain from 
(3.2) 

t=t+6t, 6t=~O(t)6a={j2cp[x(t)]dt+c}6a. (3.3) 

If (3.1), (3.2) are to satisfy the symmetry mapping 
requirement 

(3.4) 

then we must have the coordinates of the mapped curves 
y satisfy an equation of the form (2.4), namely 

x~::::: P (a" b~, it (3.5) 

It should be noted from the form of (2.4) that the paramo 
eter t is taken to be the same for all solution curves 
y E r. However, in (3.4) the param eter t will in general 
differ for each YE f. This follows as a result of the 
form of (3.3) from which it is apparent that in general 
each curve xW) determines a specific parameter t for 
its mapped image curve x!(t). ,. 

The symmetry mapping condition (3.4) [or (3.5)] is 
expressed in terms of (2.1) by the requirement that 

it::; -;") E \h,X,X =0, (3.6) 

where 

Xl = dXlldt, ':jl: fiil df2. (3.7) 

The conditions on ~I(x) and cp(x) so that (3.1), (3.2) de
fine a symmetry mapping will be obtained from (3.6). 
We first derive some basic formulas in terms of the 6-
derivative defined below. 

For any function F(x, &, x) we define 15 

(x , 'n= aF I aF 'i ~"I 
OF ,x,xl-a;crOx + ax' Ox + aX' Ox , (3.8) 

where from (3.1) and (3.2) we obtain (to first order in 
Oa) 

Oxi:;1 _xl = !!(Xi + ~'Oa) dt -x' == (- 2cpxl + ~I xm)Oa 
dt df .m' 

(3.9) 

OXI :=:ti _ x-i - !![Xl + (- 2cpxl + ~' xm)Oa] ~ - Xi - -dt .m dt 

==(_4.1.X-i_2.1. X"X i + ti X .. ';'+tl x"')Oa, '¥ 'V,m ",N ~,m 

(3.10) 
where we have made use of the relation [obtained from 
(3.2) ] 

dt ?t== (1 + 2q>Oa)-1 == 1 - 2cpOa. (3.11) 

We now expand the left Side of (3.6) in the form 

Ei(x, I, i)= EJ(x + ox,x + Ox,x-' + OX) = Ei(X,X ,x) 
+OEi(x,x,x). (3.12) 
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From (2.1) and (3.6) we obtain as a condition for a 
dynamical symmetry based upon the infinitesimal map
ping (3.1), (3.2) the equation 

EJ aEJ , aEJ 0, aEJ ", 
cS == axr cSx + ax' ox + ax' cSx == o. (3.13) 

To obtain the above mentioned conditions on ~' and </> 

such that (3.1), (3.2) define symmetry mapping we first 
replace in (3.13) the ox1 , Ox', Ox' by use of the re
spective formulas (3.1), (3.9), (3.10). Then all x' 
terms which appear in the resulting equations are to be 
replaced by us e of (2.1). The equations so obtained will 
in general be of the form 

(3.14) 

Equations (3.14) are considered as identically zero in 
the x' variables since otherwise they would impose con
straints on the dynamical system. The equations result
ing from the consideration of (3.14) as such identities 
will give the symmetry mapping conditions on the ~I(X) 
and </>(X).16 This procedure will be illustrated in later 
sections. 

4. RELATED INTEGRAL THEOREM 

With reference to the general dynamical systems 
(2.1) we prove a related integral theorem which is based 
upon the use of the O-derivative. Previous such theorems 
were obtained for specific dynamical equations and were 
formulated in terms of Lie derivatives. 5-9 

We now assume the dynamical system (2.1) admits a 
first integral (constant of the motion) of the form 
I(x, x) so that along each integral curve Y E r equation 
(2.6) is applicable. In addition, we assume that (3.1), 
(3.2) define a dynamical symmetry mapping (3.4). As 
a result we have along each integral curve YE f 

(4.1) 

Expansion of (4.1) gives 

I(x." X.,) + f>I(x." X.,) == h., + Ok.,. (4.2) 

If in (4.2) we further expand 01 by means of a formula 
similar to (3.8) and make use of (2.6) we obtain 

(4.3) 

We can thus state 

Theorem 4.1 (related integral theorem): If a dynami
cal system (2.1) admits a constant of the motion (2.6), 
and if the system admits an infinitesimal dynamical 
symmetry as defined in Sec. 3, then in general there 
will exist an additional constant of the motion defined by 

al tl al ( 2 °1 I .0.1) 
axl'> +ax':- </>x +~.JX" ==c. (4.4) 

Remark: This theorem includes previous statements 
of related integral theorems. 5-8 
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As a first application of the methods discussed in 
Sec. 3 (for obtaining conditions for dynamical sym
metries) and Sec. 4 (for obtaining constants of the mO
tion) we consider those systems whose dynamical equa
tions may be expressed in what we will refer to as the 
"Newtonian form" 

In (5.1) the tensor coefficients P1
1
".}", (which are com

pletely symmetric in the lower indices) are functions of 
the coordinates only, and 

D2xl 
'" I ( )oJ o. --=X +r xx X' df2 ik , 

(5.2) 

where r}k is the Christoffel symbol based upon the 
metric tensor glJ of the configuration space. This form 
of EI embraces many important types of dynamical sys
tems in both relativistic and non relativistic mechanics. 

To obtain the conditions for a dynamical symmetry 
[as indicated by (3.13)] based on (5.1) we first 
evaluate 

(5.3) 

+ (r:k,,,, ~'" + 2r!k~~J + ~~Jk - 2 <t>.Jo!)X.J XJ. )oa, 

where use has been made of (3.1), (3.8), (3.9), (3.10). 
Next we obtain 

N N 
o~ pi XllO" xJ",==B[pi ~k 

m::::O J1'''J m m=O il"'Jm,k 

(5.4) 

If now we substitute from (5.3) and (5.4) into 

(5.5) 

and eliminate the x' terms by means of (5.1), we obtain 
N 

L; I [.elP) ... J - 2(m - 2) </>pI,jl"'J ]Xh 0.0 Xi .. 
m:::O 1 m '" 

(5.6) 

where (e( indicates Lie derivative with respect to the 
vector ~')18 

£trj. == ~!kJ + ~~Jr~. + ~~.r~J - ~!mrj. + ~mrlk,m' (5.7) 

and where "if means omit m == 2 in the sum. 

As discussed in the comment following (3.14) we set 
the coefficients of the xi! 0 • 0 Xi", terms equal to zero and 
obtain as conditions for a dynamical symmetry of (5.1) 
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£t PL"'J",-2(m-2)¢P11""J",=O, m*2, 

£trj" - OJ¢,k - O~¢,j +£tP~k=O. 

(5.9) 

(5.10) 

The first three cases of (5.9) [m = 0, 1 , 3 J are as 
follows: 

(5.11) 

(5.12) 

(5.13) 

To specialize (5.1) to the case of a conservative 
dynamical system we take N = 0 and pi ~ tJV,J [where 
Vex) is the potential energy] which reduces (5.1) to 

(5.14) 

The symmetry conditions (5.9), (5.10) [the appropriate 
form of (5.9) is (5.11) for this caseJ becomel9 

4 ¢glJV,J + giJV;Jk~k _g1kV,J~~k=O (Ref. 20), (5.15) 

£trJk=O}¢,k +o!¢,J' (5.16) 

As an application of Theorem 4. 1 (related integral 
theorem) for this case, we consider the deformation of 
the energy integral 

I(x,;)=~glilxJ + Vex) =const (5.17) 

with respect to the symmetry vector ~I [and associated 
scalar ¢(x) J which satisfies (5.15), (5.16). We obtain 
from (4.4) the derived constant of the motion21 

_lIn )0 1 0. k 
0I=2~tglJ - 4¢g1J X Xl + V'k~ = const. (5.18) 

It should be noted that if (5.15) is satisfied by a mo
tion vector ~I, i. e., if 

(5.19) 

then it follows that ¢=O. It can be shown that (5.15) re
duces to [if use be made of (5.19)J 

(V,j ~i),J = 0, (5.20) 

which implies 

(5.21) 

where k is constant (throughout the space). 

6. APPLICATION 2: HAMILTON'S EOUATIONS lo 

In this section we choose EJ of (2.1) to be all first 
order equations which have the form of Hamilton's 
equations22 

EA=XA-rfBH,B=O, A,B=1, •.• ,2n, (6.1) 

where H(x) the Hamiltonian, expressed in terms of the 
2n coordinates .0 of phase space, which are defined in 
terms of the generalized coordinates ql and their con
jugate momenta PI by the relation 

(Xl, .•• ,x";xn+l , ••• ,x2")~ (ql, ••• , q";Pll'" 'Pn). (6.2) 
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The symplectic matrix [rfB J is defined by33 

(6.3) 

Based upon the dynamical equation (6.1) we shall 
utilize the method of Sec. 3 (as applied to first order 
equations) to formulate conditions which the mapping 
vector ~A(XI, ... ,x2n) and associated scalar <t>(x\ ... ,x2") 
must satisfy such that (3.1), (3.2) (with xl-xA) define a 
dynamical symmetry mapping within the phase space. It 
will then be shown that the existence of such symmetries 
leads in general to associated constants of the motion. In 
addition, we shall show that the related integral theorem 
in phase space may be considered as a generalization of 
the well-known Poisson theorem on constants of the 
motion. 

We first substitute from (6.1) into (3.13) and make 
use of (3.8), (3.1), (3.9), and (6.1) (to eliminate the 
XA terms) to obtain as the condition for dynamical 
symmetry the equation24 

- 2<t>rfB H,B + rfB ~~CH,B - rfB H,BC ~c = O. (6.4) 

By taking the divergence of (6.4) we immediately 
obtain 

(6.5) 

which implies that ~; C - 2 ¢ is a constant of the motion. 25 

Hence we may state 

Theorem 6.1: If ~A (x) and associated ¢(x) satisfy the 
dynamical symmetry equation (6.4), then 

is a constant of the motion of the dynamical system 
(6.1) . 

(6.6) 

We now give an alternative approach which shows that 
(6.6) follows as a consequence of the invariance under 
dynamical symmetry mapping of the divergence-free 
character of the integral curve congruence defined by 
(6.1). To do this we first,rewrite (3.9) in the form 

~ =XA + (- 2<t>XA + ~~MxM)oa. (6.7) 

We form the divergence of (6.7) to obtain26 

1lAfA = 0B[XA + (- 2¢XA + ~MXM)oa] ~~. 
. From (6.8), by use of (3.1) we find 

aA¥=OAXA+[(~A -2¢),BXB -2¢oAXA ]oa. 

(6.8) 

(6.9) 

It follows immediately from (6.1) that a AXA = rfB H,AB 
= 0; hence (6.9) reduces to 

(6.10) 

Since the demand for dynamical symmetry [refer to 
(3.6)] requires the left side of (6.10) be zero, if follows 
that (6.6) holds. Alternatively, from Theorem 6.1 it 
follows that the right side of (6.10) vanishes which shows 
the left side is zero; this in turn verifies the invariance 
of the divergence-free character of the integral curves 
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of (6.1) under dynamical symmetry mapping. 

We may utilize (6.6) to evaluate the change in differ
ential path parameter which is associated with the sym
metry mapping defined by the vector ~A. By use of (6.6) 
and (3.2) we thus obtain 

dt=dt[l + (~~A - k)1ia]. (6.11) 

We give now a second method for obtaining constants 
of the motion concomitant with the existence of dynam
ical symmetry mappings of (6.1). If (6.4) is contracted 
with H,A' then the resulting equation may be written in 
the form 

(6.12) 

which implies 1iH/1ia is a constant of the motion. This 
allows us to state 

Theorem 6.2: If ~A(X) satisfies the dynamical sym
metry equation (6.4), then in general the dynamical 
system (6.1) will admit the concomitant constant of the 
motion 

1iH 
- =H(x) ~A. 1ia ,A 

(6.13) 

We next consider the related integral theorem 4.1 as 
applied to phase space. Assume then that the dynamical 
system (6.1) has a constant of the motion of the form 
l(x). Theorem 4.1 then states that 

1iI -I ~ (6.14) 
1ia - ,A 

is also a constant of the motion, provided ~A is a solu
tion of (6.4). 

Since the dynamical equations (6.1) were based upon 
a Hamiltonian which was assumed to have no explicit 
time dependence it immediately follows that H(x) is a 
constant of the motion. We may therefore take I(x) 
=H(x) in (6.14L This gives a second derivation of 
(6.13). 

If the dynamical system (6.1) admits an r-parameter 
dynamical symmetry group defined by the vectors ~!, 
Cf = 1, ... ,r, then the first and second derived integrals 
I"" 1"'8 satisfy the relationS 

18",-1"'8=q",I,., (6.15) 

where 1",= 1i",I/1ia", , 18",=1iaI",/1ias' and Cl", are the 
structure constants of the group. 27 

It can easily be shown that the (Poisson) vector 

~t.) == rtB M,B' (6.16) 

where M(x) is a constant of the motion, is always a 
solution of (6.4) for the choice 1/>=0. For such a sym
metry vector (6.14) takes the form 

(6.17) 

which is Poisson's theorem on constants of the motion. 4 

Hence we may consider the phase space formulation of 
the related integral theorem as a generalization of 
Poisson's theorem. 

AI; a simple illustration of Theorem 6.2 we consider 
an n-dimensional isotropic harmonic oscillator in an n-
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dimensional Euclidean configuration space referred to 
rectangular coordinates. For this case the Hamiltonian 
H(x) takes the form 

H=t1iABxAxB, A,B=1, ••. ,2n. (6.18) 

It can be shown for such a Hamiltonian that a solution to 
(6.4) is2s 

~=B1,xM, 1/>=0, (6.19) 

where the 2nx 2n matrix [B~] is given by 

[B~] == [_a_~ +-b_~ J , 
- b} aJ] 

(6.20) 

where the arbitrary constants al and bJ are the elements 
of nXn matrices. It can be shown that (6.19) defines a 
2n2-parameter group of dynamical symmetries. 

It now follows from (6.13) by use of (6.18), (6.19) that 
this dynamical system will have the constants of the 
motion 

oH 
- =H A~A =BAcxA~=const. 
1ia ' 

(6.21) 

By use of (6.20) and (6.2) Eq. (6.21) can be written 
in the form 

~! = al(qlqi + PIP}) + bJ(qlpJ - qJpl ) = const. (6.22) 

We recognize by inspection of (6.22) the well-known 
symmetric tensor and angular momenta constants of the 
motion associated with the oscillator problem. 7 It is of 
particular interest that these constants of the motion 
may be considered as deformations in the Hamiltonian 
as a result of dynamical symmetry mappings. 

For the particular symmetry vector (6.19), (6.20) the 
corresponding constant of the motion (6.6) predicted by 
Theorem 6.1 is trivial. However, the general symmetry 
vector solution of (6.4) for this problem leads to non
trivial constants of the motion (6.6).28 

7. APPLICATION 3: LAGRANGE'S EQUATIONS 

Next we Shall base our formulation of dynamical 
symmetry conditions on dynamical equations which we 
assume to have the form of Lagrange's equation 

(7.1) 

where L=L(XI,XI). For such Lagrangians it is well 
known that the dynamical equation (7.1) admits the con
stant of the motion 

f"O)_dLo l Ev<,x =axlx -L. (7.2) 

We shall show that when based upon Lagrange's 
equation (7.1) the basic condition for dynamical sym
metry ~3 .13) may be expressed in an interesting alterna
tive form. This new form immediately reveals the 
existence of constants of the motion concomitant with 
these dynamical symmetries and in addition allows a 
direct comparison with the Noether approach to the 
formulation of dynamical symmetries and associated 
constants of the motion. 
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We first formulate the conditions (as outlined in Sec. 
3) that the infinitesimal mapping (3.1), (3.3) define a 
dynamical symmetry of the system (7.1). Substitution of 
(7.1) into (3.13) with use of (3.1), (3.9), (3.10) gives 

x (- 2 cpxi - ~~mxm)lia 

a2 L [ "I '1 
+ aXiaxl 4cpx + 2CP.mfmx 

(7.3) 

We now show that (7.3) may be expressed in a form 
which allows further inSight into the nature of this 
dynamical symmetry condition. By use of (3.1), (3.8), 
and (3.9) we first obtain 

and define the function N (which we refer to as the 
Noether function) by 

N(x,x)lia=-IiL +2cpLlia. (7.5) 

It now follows by a straightforward calculation that 
(7.3) may be expressed in the above-mentioned alterna
tive form [by use of (7.1»)29 

aN d aN 
IiEj = axi - dt axJ+2CP.JE=0, (7.6) 

where E(x, x) is defined by (7.2). 

The above may be summarized by stating 

Theorem 7.1: A necessary and sufficient condition that 
an infinitesimal transformation (3.1), (3.3) define a 
dynamical symmetry of the Lagrangian dynamical sys
tem (7.1) is that (7.6) hold for all solutions of (7.1). 

We next assume that Lagrange's equation (7.1) admits 
a dynamical symmetry mapping as described by 
Theorem 7.1. It now follows from the contraction of 
(7.6) with xj that 

aN XJ_E...(aN)·j+2dCP E=0 (7.7) 
axi dt axJ x dt • 

By use of (7. 2) and the relation 

dN = aN ~./ aN,,} 
dt -axJX"+ aXi x , (7.8) 

we may express (7.7) in the form 

d (, aN~.1 ) 
dt \N - aIJ X" + 2 cpE = O. (7.9) 

Expansion of the term in parentheses in (7.9) by use of 
(7.2) and (7.5) gives the constant of the motion 

a(liL) 'J _ "L 
ail xu. 

Hence we may state 
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Therem 7.2: If a Lagrangian dynamical system (7.1) 
based upon L(x, f) admits a dynamical symmetry as de
scribed in Theorem 7.1, then in general the system will 
admit a constant of the motion of the form (7.10). 

To further our understanding of the meaning of the 
constant of the motion (7.10) we note that if (7.4) is 
used in (7.10) the resulting expression may be expanded 
and regrouped to give 

a(IiL).. (aL H ) 
axJ xJ 

- liL = Ii aXi X' - L = const. (7.11) 

We thus find that the constant of the motion (7.10) is the 
deformation of the energy integral under the dynamical 
symmetry mapping described by Theorem 7.1. It is 
now apparent that (7.10) could also be obtained by the 
related integral theorem 4.1. 

We illustrate the Lagrangian formulation of the dy
namical symmetry equation (7.6) by chOOSing a 
Lagrangian which characterizes a conservative dynam
ical system30 : 

( .) - 1 • f • J (x) Lx, x = agfjX x - V • (7.12) 

By use of formulas (3.1), (3.8), and (3.9) we find 
that liL based upon (7.12) is of the form 

IiL = [-~<itgJk - 4cpgjk)XJ? - V.J~J]5a, (7.13) 

and [refer to (7.5)] the Noether function is given by 

Nlia= a (£tgJk - 2cpgjk)XJXk - (2cpV + V,je)]lia. (7.14) 

From (7.2) and (7.12) we have 

E=igJkXJ~+V, (7.15) 

and it then follows by use of (7.14), (7.15), and (5.14) 
(which is used to eliminate Xk )31 that the expansion of the 
symmetry condition (7.6) leads to 

(£tqll- Ii~CP.k -liicp)il? + (4cpglJV.J + glJV;jk~k 

- glkV.J ~I,) = 0. 

(7.16) 

Since (7.16) must hold as an identity in the x'''s, we 
again obtain (5.15) and (5.16) as the conditions on ~f 
and cp for dynamical symmetry. 

It now follows with L(x, x) given by (7.12) that the con
comitant constant of the motion (7.10) associated with 
the existence of the dynamical symmetry (7.6) is the 
derived constant of the motion (5.18), as would be 
expected. 

We give another illustration of the Lagrangian formu
lation of dynamical symmetry conditions and associated 
constants of the motion by taking32 

(7.17) 

where the matrix [nAB] is the inverse to the matrix 
[~B] [defined by (6.3)], H(xA) is the Hamiltonian, and 
the xA are defined by (6.2).33 Based upon (7.17), the 
formal expansion of Lagrange's equation 

aL d aL 
Ec =- axC - dt aXC =0, (7.18) 

gives Hamilton's equation (6.1). 
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The condition (7.6) for a dynamical symmetry of 
Lagrange's equation when based upon L gives by (7.17) 
requires that 

- 2cfJ11cs XS -11AC ~~? -11BA ~~c? - H.AC~A - H,A ~~c =0. 

(7.19) 

To obtain the final form of the symmetry condition we 
use (6.1) to eliminate xa terms in (7.19). The resulting 
equation is easily shown to be equivalent to (6.4) (if use 
be made of the relation 11ASrf C = o~). 

Application of Theorem 7.2 based upon (7.17) and a 
symmetry vector ~A which is a solution of the dynam
ical symmetry condition (6.4) gives [from (7.10)] the 
constant of the motion 

(7.20) 

It should be noted that the left side of (7.20) is pre
cisely oH/oa. This is to be expected since H(xA) is a 
known constant of the motion and the related integral 
theorem in the form (6.14) with I=H gives (7.20). 

8. NOETHER SYMMETRIES AND THEIR 
RELATIONSHIP TO DYNAMICAL SYMMETRIES 
FORMULATED AT THE LEVEL OF LAGRANGE'S 
EQUATIONS 

In this section we make a comparison between the 
dynamical symmetry conditions and concomitant con
stants of the motion formulated directly at the level of 
Lagrange's equation (as described in Sec. 7) and those 
which are obtained from the well-known Noether 
identity. 3 We shall show that even for the relatively 
simple case of a conservative dynamical system these 
two approaches lead to considerable differences in 
symmetries and associated constants of the motion. 

We give first a short derivation of Noether's identity 
which is independent of the integration processes of 
Hamilton's variational principle. For purposes of 
making the above-mentioned comparisons we shall base 
this derivation upon mappings of the form (3.1), (3. 3). 

We take then the Lagrangian in the form L(XI,Xi) and 
define 

OL d aL 
L j = axl - dt ax l ' 

If we consider 

then from (8.1) and (8.2) we obtain 

(8.1) 

(8.2) 

d (aL'I) 'I dt axlx -L +L1x =0. (8.3) 

If (8.3) is multiplied by ot [as defined by (3.3)] and the 
resulting expression is subtracted from the right side of 
(7.4), we obtain 

oL=- (d (E~O) -2</>L + OL;j + aL;1 tm -L xl~O\oa 
dt axl ail ,m I J ' 

(8.4) 

where E is defined by (7. 2). Equation (8.4) may be re
written in the form of Noether's identity34 
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(8.5) 

where N i.s defined by (7.5). 

Since along a dynamical path LI = 0, it follows that if 
N(x, x) can be expressed in the form3 

d 
Noa= - dt (00), oO(x)= O(X),1;1 (x)oa, (8.6) 

then from (8.5) we obtain 

:t (-Hr~joa-E~Ooa+oo) =0. (8.7) 

We refer to (8.6) as the Noether symmetry condition 
and to (8.7) as the concomitant Noether constant of the 
motion. 

We next consider the problem of obtaining specific 
conditions on the Noether symmetry vector ~I defined by 
(8.6) for the case of a conservative dynamical system 
with Lagrangian defined by (7.12). From (7.14) and 
(8.6) we immediately obtain 

~{£tgIJ - 2 </>glj)xl ;; + (0.f;I),jX' - (2</>V + V'I;I) = O. 

(8.8) 

Since (8. 8) is not to act as a constraint on the dynam
ical system we must have 

£tgjJ - 2cfJglJ = 0, 

2</>V+V,I;I=0, 

(0,1 ;1) ,J = O. 

(8.9) 

(8.10) 

(8.11) 

From (8.11) and (8.6) we see that d(OO)/dt=O and 
hence from (8.6) we must have N=O. From the form of 
(8.11) we observe that any solution ~I of (8.9), (8.10) 
will lead to a differential equation which in general ad
mits a solution for O. Conversely (8.9), (8.10), (8.11) 
imply (8.8) and (8.6). 

We summarize the above results by stating 

Theorem 8.1: A conservative dynamical system de
fined by a Lagrangian (7.12) will admit a Noether sym
metry [defined by (8.6) and based upon infinitesimal 
mappings (3.1), (3.3)] if any only if (8.9), (8.10), and 
(8.11) are satisfied. These conditions imply N = 0 and 
15O(x)=const (throughout space). From (8.11) and (8.7) 
we may also state the following: 

Corollary 8.1: If a conservative dynamical system 
with Lagrangian (7.12) admits a Noether symmetry as 
described in Theorem 8.1, then it admits a constant of 
the motion 

(8.12) 

where E is defined by (7.2) and ~o by (3.3). 

We now investigate the relationship between the 
Noether symmetry condition (8.6) and the condition 
(7.6) for a dynamical symmetry based directly at the 
level of Lagrange's equation. We first obtain the con
dition that a Noether symmetry be a solution of the 
dynamical symmetry equation (7.6) for the general case 
in which L=L(xI,5;I). It immediately follows from (7.6) 
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by use of (8.6) (since Ml is a function of the coordinates 
only) that 

(8.13) 

The dynamical symmetry condition (7.6) was formulated 
for an unconstrained dynamical system whiCh implies 
that E is not restricted to any prescribed value. Hence 
(8.13) requires ¢.J=O, i.e., ¢=const. Conversely 
with ¢ = const (7.6) is obviously satisfied by a Noether 
symmetry (8.6). 

The above may be summarized by stating 

Theorem 8.2: For an (unconstrained) dynamical sys
tem characterized by a Lagrangian L(x, x) a necessary 
and sufficient condition that a Noether symmetry [de
fined by (8_. 6) and based upon infinitesimal mappings 
(3.1), (3.3)] satisfy (7.6), the condition for a dynamical 
symmetry b: j directly at the level of Lagrange's 
equations, is that ¢=const in (3.2) [and (3.3)]. 

If in Theorem 8.2 we now specialize L(x,x) to the 
form (7.12) which is characteristic of a conservative 
dynamical system, it then follows by use of Theorem 
8.1 that we may state 

Corollary 8.2: For a conservative dynamical system 
characterized by Lagrangian (7.12) necef"sary and suffi
cient conditions that a Noether symmetry vector, as de
scribed in Theorem 8.1, satisfy the (unconstrained) con
dition (7.6) for a dynamical symmetry based directly at 
the level of Lagrange's equations are that (8.9), (8.10) 
be satisfied with ¢ = const. Such a symmetry is at most 
a homothetic motion. 

It is of interest to note that conditions (8.9), (8.10) 
(with ¢ not necessarily constant) are the conditions 
that the mapping (3.1), (3.2) define a natural traj ectory 
collineation of the zero energy traj ectories. 9 

Next we turn our attention to the comparison of the 
constants of the motion which are concomitant to the 
two symmetry approaches considered above. 

Based upon the mappings (3.1), (3.3) it is seen [we 
assume here the general case in which L = L(x, x)] that 
the Noether constants of the motion resulting from (8.7) 
will in general be time-dependent (as a result of the 
time-dependence of ~O) Whereas the constants of the 
motion (7.10) concomitant with the dynamical symmetry 
condition (7.6) are independent of time. 

We now wish to compare time-independent constants 
of the motion which may be obtained from the Noether 
formalism with those given by (7.10). To obtain such 
(Noether time-independent) constants of the motion 
from the Noether formula (8.7) we must limit the as
sociated dynamical mappings (3.1), (3.3) to those for 
which ¢=O. 

To further assess the implications of this restriction 
and to simplify the above-mentioned comparison we now 
specialize the dynamical system being considered to a 
conservative one with Lagrangian given by (7.12). The 
resulting constant of the motion thus obtained from the 
Noether approach is found from (8.12) to be 

gIJ~IXJ_C(~glixIXJ+V), c=const (Ref. 35), (8.14) 

where from (8.9), (8.10) it follows that the associated 
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(8.15) 

(8.16) 

The second term in (8.14) is the total energy, a con
stant of the motion. 36 It therefore follows that the first 
term is also a constant of the motion which may be 
expressed in the form 

(8.17) 

Thus for a conservative dynamical system based upon 
Lagrangian (7.12) we find the time-independent Noether 
constants of the motion associated with the Noether 
symmetry vectors ~I to be the well-known linear first 
integrals (momenta integrals) (8.17). 

In contrast to these results it will be recalled that for 
the same conservative dynamical system we found 
(refer to Sec. 7) from the formulation of the symmetry 
conditions directly at the level of Lagrange's equations 
that the symmetry vector ~I must satisfy (5.15), (5.16) 
and it then followed that the concomitant constants of 
the motion were given by (5.18). We note that (5.18) is 
in general a quadratic integral and in general is not the 
total energy. 

As a specific illustration of these contrasting results 
we consider the case of a three-dimensional isotropic 
harmonic oscillator. For such a dynamical system it 
can be shown that the vector ~I which is determined by 
(5.15), (5.16) defines a 9-parameter group of affine 
collineations ACg • 7 This ACg contains three rotations 
and six proper affine collineations. Based upon the 
proper affine collineation symmetry vectors we find the 
concomitant constants of the motion defined by (7.10) 
[or equivalently by (5.18)] to be the well-known sym
metric tensor constant of the motion [refer to (6.22)], 
whereas the time-independent Noether symmetry condi
tion (8.15) is not satisfied by these proper affine col
lineation symmetry vectors and hence (8.17) is inappli
cable. On the other hand, the rotation part of the dynamo 
ical symmetry which satisfies both (5.15), (5.16), and 
(8.13) accounts for the constant angular momenta by 
use of (8.17) and leadS to a trivial result in (7.10).37 

It is now apparent for the purpose of determining 
time-independent constants of the motion of a conserva
tive dynamical system [with Lagrangian (7.12)] that 
thos e dynamical symmetry mappings [of the type (3.1), 
(3.3)] based directly at the level of Lagrange's equa
tions are more general than those based upon the appro
priate Noether symmetry mappings. As a result of this 
added generality in the dynamical symmetry mappings 
we obtain [through (7.10)] time-independent constants 
of the motion not associated with the Noether identity. 

9. DYNAMICAL SYMMETRIES BASED UPON THE 
HAMIL TON-JACOBI eQUATION AND THEIR 
RELATION TO NOETHER SYMMETRIES 

In the preceding sections we obtained the conditions 
for dynamical symmetries by requiring that infinitesi
mal point mapping'> with associated changes in differen-
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tial path-parameter map the set of solutions of a dynam
ical equation into itself. Thus far our formulation of 
symmetry conditions has been based directly at the 
level of the dynamical equations, which we have taken 
to be of the form of Newton's, Hamilton's, or 
Lagrange's equations. 

It is well-known that the Noether symmetry condition 
(8.6) may be interpreted as defining a dynamical sym
metry mapping at the level of Hamilton's variational 
principle, even though we found such a mapping in 
general did not satisfy the conditions for a dynamical 
symmetry which were formulated at the level of 
Lagrange's equations. As a means of interpreting the 
Noether mappings as dynamical symmetries directly at 
the level of the dynamical equations we now turn our 
attention to the transformation theory of mechanics
namely the Hamilton-Jacobi theory. For simplicity we 
shall limit our considerations to conservative dynamical 
systems characterized by Hamiltonians of the type38 

(9.1) 

in which case the Hamilton-Jacobi equation takes the 
form 

1-..lJ{ )as(x,t) as(x,t)+V{ )+as(x,t)=o 
25 x axl axJ x at ' (9.2) 

where S{x, t) is Hamilton's principal function. 

It will be shown that the demand that the set of solu
tions of the Hamilton-Jacobi equation maps into itself39 
leads to the Neother symmetry conditions. This (not 
entirely unexpected) result will allow us to interpret the 
Noether symmetry mappings as dynamical symmetry 
mappings demonstrable at the level of the dynamical 
equations. By use of the Noether identity it then follows 
that the Noether constant of the motion (8.12) may be 
considered as a concomitant of dynamical symmetries 
based upon the Hamilton-Jacobi equation. 

As a first step to determine infinitesimal pOint map
pings of the form (3.1), (3.3) which map the set of 
solutions of (9. 2) into itself, we define 

J[s S ] == 1-..lJ (x)as{x, t) as{x, t) + V{ ) + as{x, t) 
,I' ,t'X 25 axl axi x at' 

(9.3) 

and note that as a result of a mapping defined by (3.1), 
(3.3) Eq. (9.3) takes the form 

J[s _ S _ -] == 1- lJ (_)as(x ,7) as(x, 1} + VI""::) + as(x ,7) 
,I' ,t,X 2g x axl axJ v< aT' 

In (9. 4) we next express x, t in terms of x, t by 
means of (3.1), (3.3) and obtain 

(9.4) 

J[S,i ,S,t,x] =tgfJ{X + ox) (as (x + ~;' t + (it) (o~ - ~~Ioa») 

x (as {x + ox, t + of) (om _ ~m oa») 
axm J ,J 

+ V(X+OX) 

(9.5) 
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If (9.5) is expanded in powers of oa (to first order), 
we obtain 

J(S,l' S,t,x] =J[S ,I'S,t' x] + oJ[S, I' S,t'x], (9.6) 

where 

5J"'H£~gli)S'fS,Joa + gfiS,I(OS),J + (oS),t - 2CPS,toa 

with 

and 

~tJ '" t.~ ~k - glk ~~k - gkJ ~!k' 

Consider next the expression 

(9.7) 

(9.8) 

(9.9) 

J[(S + oS) ,I' (S + oS) ,t' x] "'tgl J (S + oS).1 (S + oS),J + V(x) 

+(S+oS),t· (9.10) 

Expansion of (9.10) to first order in oa leads to 

J[(S + oS) ,I' (S + oS),t' x] =J[S, I' S ,t' x] + o*J[S, I' S,t' x], 

(9.11) 

where 

(9.12) 

We now formulate the conditions for a dynamical 
symmetry mapping based upon the Hamilton-Jacobi 
equation by requiring that 

J[S,I ,S,t ,x] + oJ[S,l'S,t ,x] =J[(S + oS),1' (S + oS),t, x], 

(9.13) 

hold for all functions S(x, t) which satisfy (9.2). 

By use of (9.11) we find that (9.13) requires 5J=0*J 
and hence by (9.7) and (9.12), we obtain 

M,{?tgfJ)S .IS,! - 2 cpS ,t + V'k~k = O. (9.14) 

We now eliminate the S,t term in (9.14) by use of (9.2) 
and obtain 

(9.15) 

Since (9.15) must not act as a constraint on the 
Hamilton-Jacobi equation (9.2) we must require that 
(9.15) hold identically in the quantities S,l' We thus 
obtain as the requirements for dynamical symmetry 
the conditions 

£tgfJ + 2cpgfJ =0, 

2CPV + V'k~k = O. 

(9.16) 

(9.17) 

It immediately follows [by use of £,gfJ", - gfagib£tgab 
in (9.16)] that (9.16), (9.17) are the Noether symmetry 
conditions (for a conservative dynamical system) (8.9), 
(8.10) , respectively. 

Conversely, if the infinitesimal pOint mapping (3.1), 
(3.3) satisfies the Noether symmetry conditions (9.16), 
(9.17), then (9.13) will be satisfied. 

We thus have 
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Theorem 9.1: For a conservative dynamical system 
with Hamiltonian (9.1) a necessary and sufficient condi
tion that the infinitesimal transformation (3.1), (3.3) 
map the set of solutions of the Hamilton-Jacobi equation 
(9.2) into itself [in that (9.13) holds) is that the mapping 
be a Noether symmetry mapping, i.e., the transforma
tion must satisfy (8.9), (8.10). 

By use of the Noether identity we may now associate 
with the existence of the above described dynamical 
symmetry formulated of the level of the Hamilton
Jacobi equation a concomitant constant of the motion. 
Hence we may restate Corollary 8.1 in the following 
form. 

Corollary 9.1: If a conservative dynamical system 
with Hamiltonian (9.1) admits an infinitesimal trans
formation (3.1), (3.3) which maps the set of solutions 
of the Hamilton-Jacobi equation into itself as defined 
in Theorem 9.1, then there will exist a concomitant 
constant of the motion which may be expressed in the 
form (8.12). 
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lOrn this section we expand and elaborate on basic results given 
in Ref. 8. 

HA. Komar, Phys. Rev. D 8, 1028 (1973), has also considered 
noncanonical symmetry mappings and concomitant constants 
of the motion. 

l2We assume Eqs. (2.1) are all of the second order or all of the 
first order. We use second order equations to illustrate the 
basic methods which we wish to develop. 

13The interpretations of the xi and their assigned index ranges 
for these specific types of dynamical equations will be made 
in the appropriate sections to follow. 

14Velocity dependent constants of the motion are to be associat
ed with Eqs. (2. 1) which are of second order. See Footnote 12. 
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15Unless otherwise indicated the Einstein summation convention 
will be used. Also small italic indices will have the range 1 
through n (unless otherwise indicated). A comma (,) indicates 
partial differentiation. 

lGEquations (3. 14) will usually be in the form of polynomials 
in the xl, in which case the symmetry conditions are easily 
obtained. 

17The first term in the summation corresponding to m = 0 will 
be denoted by pi. 

18For a general discussion of Lie derivatives, see K. Yano, 
The Theory of Lie Derivatives and Its Applications (North
Holland, Amsterdam, 1957). 

19Equations (5.15), (5.16) were derived in Ref. 7 by an alterna
tive method. A detailed application of these equations to the 
Kepler problem and isotropic harmonic oscillator is also 
given in Ref. 7. 

2oCovariant differentiation with respect to r}k is indicated by a 
semicolon (;). 

21For applications of (5.18) to the problems mentioned in Ref. 
19, see Ref. 7. 

22Capital indices will have the range I, 2, ... , 2n. 
23Here On and In are nth order zero and identity matrices, 

respectively. 
24An alternative derivation of (6.4) is given in Ref. 8, where it 

is shown that in general the dynamical mappings defined by 
(6.4) are not canonical. A similar equation (in which cp = 0) 
was obtained in Ref. 11 for the case of a time-dependent ~A. 

25A similar constant of the motion with cp = 0 is given in Ref. 11. 
2GThe notations GA' liA indicate partial differentiations with re

spect to xA, iA, respectively. 
27The deformation operator 0 .. is defined in terms of the vector 
~~. 

28A general solution to (6.4) for this problem has been obtained 
and will be published elsewhere. 

291n Sec. 8 the symmetry conditions (7. 6) will be compared 
with the Noether symmetry condition (8.6). 

3~his choice will allow a comparison with the dynamical 
symmetry conditions based on the "Newtonian form" of the 
dynamical equations as discussed in Sec. 5 and will also be 
useful in our comparison with the Noether approach of Sec. 
8. 

31Note that Lagrange's equation (7.1) expands to the form 
(5.14) by use of (7.12). 

32C. W. Kilmister, Hamiltonian Dynamics (American Elsevier, 
New York, 1965). 

331n the remainder of this section we shall again assume all 
capital indices range I, ••• , 2n and employ the notation of 
Sec. 6. 

34It can be shown that if the mapping (3. I), (3.3) is assumed 
to have the more general form xi =xi +~i(x, t)oa, t= t 
+ ~O(x, t)oa and the Lagrangian L taken in the form L 
= L(x, x, t), then a similar derivation to that given above again 
leads to the Noether identity (8. 5), but expressed in terms 
of the generalized mapping vectors. 

35Note that the constant c is the sam~ as appears in (3.3). 
36Since the energy integral is independent of the mapping vector 

~ i this constant of the motion may be regarded as ari sing 
from a time-translation ot= coo. 

37A similar analysis of the Kepler problem shows that the 
Runge-Lenz vector to be given by (7.10) and the angular 
momenta given by the Noether formula (8.17). See Ref. 7. 

38This Hamiltonian corresponds to Lagrangian (7.12). 
39The question of mapping partial differential equation solu

tions into themselves has also been considered by R. L. 
Anderson, S. Kumei, and C. E. Wulfman, Phys. Rev. Lett. 
28, 988 (1972); J. Math. Phys. 14, 1527 (1973). 



                                                                                                                                    

Special relativity in general relativity?* 
D. Hirondelt 

Department of Physics, University of Delaware, Newark, Delaware 
(Received 13 August 1974) 

Starting from the metric in hannonic coordinates for a test particle m 1 around a heavy particle 
m 2(m 2>m 1) at rest, the EIH Lagrangian is recovered by making a Lorentz transformation, followed 
by a canonical transformation and an appropriate symmetrization in the two masses. This raises the 
question of a special relativity content in general relativity, a feature not directly implied by the 
general covariance. 

1. INTRODUCTION 

The laws of gravitation in Einstein's general relativity 
are generally covariant with respect to any change of 
coordinates; in any set of coordinates they will look like 
Ru - ~guR = 87TGC·4T iJ' where RiJ is a certain function 
of the gkl and their derivatives, up to second order. ds2 

= gu (q) dq'dqJ is postulated to be an invariant. 

General covariance was of much value to Einstein, 
and inspired the name of his theory. But it is now ad
mitted that general covariance in itself is physically 
empty, to the extent that the equations of any theory 
could be cast in covariant form. This format invariance 
gives the equations of motion, for example, the same 
aspect in any set of coordinates, but the functional de
pendence of the accelerations on their arguments will 
be a priori different in each set of coordinates. 

However, we observe that, for a certain family of 
coordinates, we do have functional invariance of the 
accelerations with respect to their arguments, under 
Lorentz transformations, for the case of two masses, 
up to order c·2 • Einstein, Infeld, and Hoffman (EIH)l 
and, later, Fock2 showed there existed a common 
Lagrangian for the problem of two gravitating particles, 

L l~1 vtl...21 ~ 
= 2ml 1 + 8ml c2 + 2m2vli + 8m2 c2 

Gmlm2 [1 1 ( . .2 • .2 r O V;-;oV2)·] + -r-- + 2c2 3vi + 3vi! - 7v1 ' v2 -

G2mlm2(ml +m2) 
2c2y2 

On the other hand, Currie and HilP have given the 
conditions on a dynamics: 

~rl(t) = r (t) drl(t) dr2 (t)] 
dt2 al lr , dt ' dt ' 

guaranteeing that, after a Lorentz transformation, it 
will look like 

~r{(t') ['(t') drs. (t') drg(t')] 
---;iii2 = a l r 'dt' 'dt' , 

where the a's are the same functions of their arguments 
as before the transformation. World line invariance is 
postulated to obtain these conditions. They put all 
Lorentz frames on the same footing, and privilege none 
of them. This special relativistic covariance is a strong 
reqUirement, while general covariance is not. 

U is a fact that the accelerations obtained from the 

EIH Lagrangian, 

x ~ (-~ +4vlo v2-~ +~ (r;:a)2) 
+(vl-v)(4rov -3r ov)] +G2mlm2(5ml+4m2)r 

2 1 2 C2r4 , 

satisfy Currie-Hill conditions up to order c·2 : 

+ (V2V2 - raa) 0 0Y2 al - 2vlal - alvl] , 

as one can check by direct calculation. 

The original computations for obtaining the EIH 
Lagrangian being quite lengthy, the preceding result 
suggests how to recover it in a simple way by starting 
from the known metric for a test particle around a heavy 
particle at rest, in harmonic coordinates (the chOice of 
this particular set will be justified), and making a 
Lorentz transformation for setting the heavy body into 
uniform motion. A canonical transformation will sym
metrize the Lagrangian in the velocities of both parti
cles. Symmetrization in the two masses, to yield a 
Lagrangian usable when the two masses are comparable, 
requires a certain care. The end result is the EIH 
Lagrangian • 

2. THE EIH LAGRANGIAN FROM THE CASE OF ONE 
BODY AT REST 

The metric for a test particle ml in the field of a 
spherically symmetric, heavy particle m 2 (m 2 » ml) is, 
in harmonic coordinates (ro'" Gm2c·2) , 

ds2=c2dt2 r-ro _ r+ro dr 2 

r+ro r-ro 

- (r + ro)2(d02 + sin2 9 d(j02) 

= c 2 dt2 {r - ro _ ..;. [r +ro (rOrVI) 2 
r+ro c r-ro 

+( + )2~-(rOVI)2J} r ro y2 • 

The Lagrangian for particle 1 is, by expanding ds up to 
order 1/c2: 
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= (Tr + vi ) + Gmlm2 (1 + ~ ~) 
m 1 2 8el1 r 2 CZ 

Since 1/ ell appears in the two dimensionless ratios 
v2

/ CZ and Gm2/ CZr, keeping only the lowest powers of 
1/ CZ is an approximation valid for slow motion and suffi
ciently large separation. A cutoff at a given level in 
1/ ell implies a corresponding cutoff Of the series in G: 
The 1/ CZ term in L 1 is a polynomial in G containing no 
higher power than G2. Later on, the expression "up to 
order G or G2" will refer to the coefficient of 1/CZ in 

L· 
Now, we go into a frame in which the velocity of 

particle 2 is v2 • The kinetic energy part of L 1: m1 (~/2 
+ yt/8el1) is left unchanged by a Lorentz transformation 
as it corresponds to the invariance of the proper time 
dTI = (1-VVl!2 dt. 

For the remainder, it is enough to use: 

_ + (r o va)va 
r r 2el1 ' 

dt-dt(1- v,oVa+.!L) 
CZ 2 ell , 

where, after the Lorentz transformation, we made an 
instantaneity correction: r 2(t2) = r2(t) - V2 (t1 - t2) to make 
the two particles simultaneous in the new frame. We 
obtain 

L - (~+-Y1.) + Gm tm a[1 +~ (_ (r·vg )2 
I-

m
l 2 8CZ r CZ r2 

+~(~ - 2v1 • v2 +v~) - VI· v2 +~)J 
Adding 

(
!i+..!i.) +E..(Gmlma r

o 
Va) 

m2 2 8el1 dt 2CZ r ' 

does not change the acceleration of particle 1, but yields 
a Lagrangian which, up to order G, is not symmetric in 
the indices of both particles, and can be used for both up 
to that order: 

G2mlma{ma) 
2e2r2 

This last addition is the same as the one we would make 
to recover by a Lorentz transformation the Darwin
Breit Lagrangian from the Lagrangian of a test particle 
in the electromagnetic field of a heavy charged particle 
at rest: 

f[ ( V2)1!2 e e ] o -m1 CZ 1-? -~ dt=O. 

In this case, there is no term quadratic in the product 
of the two charges (contrasting with the gravitational 
case, where the G2 term was the mark of the nonlinear-

J. Math. Phys., Vol. 15, No.9, September 1974 

1472 

ity). The only effect of the Lorentz transformation is the 
appearance of a magnetic force; radiation is absent. 

Now, by admitting that there exists a common 
Lagrangian up to order 1/ ell, symmetric in the indices 
of the velocities and the mass of both particles, 

L =kinetic energy + Gm;ma[1 + ~[A(~+~)+Bvl°V2 

(A,B, C,D being numerical coefficients), which we know 
from the work of Einstein, Infeld, and Hoffman, and 
Fock, then the only function symmetric in m 1 and m2 

which yields m 2 when m 2 » m 1 is unambiguously m 1 + m 2 • 

This last step certainly modifies the acceleration of 
particle 1, but supplies us with a common Lagrangian 
which can be used for both particles up to order G2, 
when both masses are comparable, and which coincides 
with the EIH Lagrangian. 

Now, we have to give the reason why making a 
Lorentz transformation in harmonic coordinates was 
expected to lead to the correct result. A first practical 
reason is that Fock worked out the EIH Lagrangian in 
harmonic coordinates: Thus, if we wished to find the 
same result, we had to start from the same kind of 
coordinates (we will see that the harmonicity condition 
is left unchanged by a Lorentz transformation). Ein
stein, Infeld, and Hoffman defined their system of co
ordinates at each step of approximation, but their result 
is the same. 

Another reason why, at least up to order 1/ CZ, 
Lorentz transformations were expected to play an im
portant role is that the field equations in first approxi
mation, and in harmonic coo rdinates, are 

where 0 2 is the d' Alembertian in flat space. Thus the 
field propagates along light cones, as in special rela
tivity. At higher orders in e·2

, the characteristics for 
the propagation of the field will be curved, not straight, 
and their form will be codetermined with the configura~ 
tion of the masses. 

However, in spite of the loss of isotropy and uni
formity, a theoretical reason to guess that Lorentz 
transformation will still playa major role to all orders 
in e·2 in Fock's proposition2 that it is unlikely that there 
exists any system of coordinates, other than the har
monic set, determined uniquely apart from a Lorentz 
transformation, because they are characterized by the 
fact that they satisfy a linear, generally covariant 
equation: 

rl=~ 03 (Igll!2gfl);; 02Xl =0. 
Igl oX' 

Harmonic coordinates exclude all fictitious gravitational 
fields, and, in a way, they can be called the most 
inertiallike coordinates. Is that enough to entail world 
line invariance and functional invariance under Lorentz 
transformation to all orders? 
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CONCLUSION 

We have recovered the ElH Lagrangian by a procedure 
whose simplicity contrasts with the lengthiness of the 
original computations. It raises the question of a Special 
Relativity content in General Relativity, apparently 
restricted to harmonic coordinates. As a test, it would 
be worth computing the accelerations up to order c·4 to 
see if they satisfy the Currie-Hill conditions. 
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Stability of stochastic functional differential equations 
M. H. Chang, G. Ladde, and P. T. Liu 

Department of Mathematics. University of Rhode Island, Kingston. Rhode Island 
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A system of functional differential equations with random retardation, x (t) = f( t, X ,). is studied, 
where x ,(0) = x(t + 0), 1/(t, Ol) ::; 0::; O. - r ::; 1/(t. Ol) ::; O. and 1/(t. Ol) 

is a stochastic process defined on some probability space (n. fL. P). Some comparison theorems are 
stated and proved in details under suitable assumptions on f( t , X ,). Sufficient conditions for stability 
in the mean for the trivial solution then follow. The usefulness of the sufficient conditions is 
illustrated by an example with two different Lyapunov functions. 

1. INTRODUCTION 

In the study of some sophisticated dynamical systems, 
it is always desirable to consider either stochastic dif
ferential equations or functional differential equations. 
Despite the amount of work that has been done on each of 
the two types of differential equations, very little effort 
seems to have been devoted to correlate them. 

In Ref. 1, Lidskii investigated the problem of stability 
in the mean for the solutions of a system of linear dif
ferential equations with random delays. In that paper, he 
used the Lyapunov direct method, without proving its 
validity in the case of random delays, and obtained some 
sufficient conditions for stability of the trivial solution 
in the mean. 

The concept of the Lyapunov function, together with 
the theory of differential inequalities provides a very 
general comparison theorem (see Ref. 2) by means of 
which a number of qualitative properties of solutions of 
differential equations may be studied in a unified way. 

In the present paper, we consider a general class of 
stochastic functional differential equations. Our main 
purpose is to establish the stochastic version of the 
comparison theorem for the functional differential equa-· 
tion in Ref. 2. As in the deterministic case, sufficient 
conditions for stability (in the mean) follow easily from 
the comparison theorem. 

2. NOTATIONS AND DEFINITIONS 

Let {1)(t, .), t E R+} be a stochastic process defined on 
a probability space (0, /J., P) and takes values in [- r, 0], 
where R+=[O, co). LetC=C([-r,O],R") and, forcf>EC, 
we define 1Icf>lIo= sup 1Icf>(o)ll, where 11·11 is an Euclidean 

-r"""O norm. 

Consider the system of stochastic functional differen
tial equation 

x(t)=f(t, XI) (2. 1) 

with initial conditions 

Xlo=cf>oE(, 1) (to) =1)0' 

where 

XI=X(t+s), 1)(t)<ss<sO, -r<S1)(t) <sO, and toER-. 

From now on, we shall assume f(t, 0) = o. To ensure 
that (2.1) has a solution x(to' cf>o,1)o}(t) on [to, co) with ini
tial data (to, cf>0,1)0), we shall assume that f(t, XI) is suf
ficiently smooth and 11(t, • ) takes on countably many val
ues, say R, in [- r, OJ. 

Also, conSider the scalar differential equation 

(2.2) 

where gE C(W XR" W), g(t, 0) = 0 and g(t, u) is concave 
in u for fixed t. A solution of (2.2) will be denoted by 
u(t, to, uo) defined on [to, co). 

Let us define some definitions of stability in mean of 
the trivial solution X = 0 of (2. 1) as following: 

Definition 2.1: The trivial solution x=O of (2.1) is 
said to be: 

(i) equistable in mean, if for each E> 0" to[O, co), there 
exists a positive function 0 = o (to, E) that is continuous in 
to for each E> 0 such that the inequality II cf>ollo <S 0 implies 
M[ IIx(to' cf>o, 1)0)(t) III cf>o, 1)0] < E for t", to' 

(ii) uniformly stable in mean, if the 0 in (i) is inde
pendent of to' 

(iii) quasi-equi asymptotically stable in mean, if for 
each E> 0, to E [0, co), there exist 00 = 0o(to) > 0 and T 
= T(to, E) > 0 such that for t '" to + T and II cf>o 110 < 0 implies 
M[lIx(to' cf>o, 1)o}(t) II I cf>o, 1)0] < E. 

(iv) quasiuniformly asymptotically stable in mean, if 
00 and T in (iii) are independent of to' 

(v) equiasymptotically stable in mean if (i) and (iii), 
hold Simultaneously; uniformly asymptotically stable in 
mean if (ii) and (iv) hold together. 

Corresponding to Definition 2.1 (i), we can define the 
definition of stability of the trivial solution u = 0 of (2.2) 
as the following: 

Definition 2.2: The trivial solution u = 0 of (2.2) is 
said to be equi-stable, if for each E> 0, to E [0, co), there 
exists a positive function 0 = o(to, E) that is continuous in 
to for each E > 0 such that 

u(t, to, uo) < E t '" to whenever Uo <S o. 
The following two definitions will be useful. 

Definition 2.3: A function a(r) is said to belong to the 
class/( if aEC(R.,W), a(O)=O, and a(r) is strictly 
monotone increasing in r. 

Definition 2.4: A function b(t, r) is said to belong to 
the class B, if bE C(R+XR.,W), b(t,' )E/( for each 
tER+. 

3. COMPARISON THEOREMS 

Let the ,Lyapunov function, V(t, y, 1)(t», be defined as 
V E C([ - r, 00) xRnxR, R+). Define 

D+M[V (t, cf>(O), 1)(t); cf»] 
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= Urn h-l~[V(t+h, CP(O)+hf(t, cp),7)(t+h» !7)(t)] 
,...a+ 

- V (t, CP(O),7)(t»}, t> ta, (3.1) 

where CPEe, M[A IB] is a conditional mathematical ex
pectation. 

IiI={CPE( 1_~~gaM[V(t+s, CP(s),7)(t+s»l7)a] 

=M[V(t, <f>(0), 7)(t» l7)a]}, (3.2) 

and 

1i2={CPE( I sup M[V(t+ s, CP(s), 7)(t+ s» l7)a}A(t + s) 
-r=Es~O 

=M[V(t, CP(O), 7)(t» ha}A(t)}, (3.3) 

where A(t) > 0 is continuous on [- r, 00). 

After introducing all those notation and definitions 
listed above, we shall state and prove in detail the 
stochastic version of the main comparison theorem (see 
Ref. 2, p. 83) as the following: 

Theorem 3.1: Let V E C([- r, oo)xRnxR, W) and 
Vet, CP(O), 7)(t)) be locally Lipschitzian in CP(O) uniformly 
in 7)(t). Assume D+M[V(t, CP(O),7)(t);cp)] defined as in (3.1), 
satisfies 

D+M[V(t, CP(O), 7)(t); cp)] <fg(t, Vet, cp(O),7)(t))) for t> ta, 

(3.4) 

where CPEIiI; gEC(WXR+,W) andg(t,u) is concave in 
u for fixed t. 

Let r(t) = ret, ta, ua) be the maximal solution of the 
scalar differential equation 

fl=g(t,u), u(ta)=ua~O, 

and ret) exists to the right of ta' 

(3.5) 

lf {x(to' cl>o' 7)0)(t, w)} is the realization of solutions of 
(2. 1) defined on [to, 00), satisfying 

sup VUo' CPo(s), 7)0) <fUo, (3.6) 
-r~ s E 0 

and M[V(t, x(to, CPo, 7)o)(t), 7)(t» I CPo,7)a] is differentiable in 
t, then 

M[V(t, x(to' CPo, 7)0)(t), 7)(t)} I CPo, 7)0] <f ret, to, uo), t ~ to' (3.7) 

Proof: Let x(to' CPo, 7)o)(t) be any solution of (2. 1) with 
initial conditions (ta' CPo, 7)0)' 

Define 

m(t):: M[V(t, x(to' CPo, 7)o)(t), 7)(t» I CPo, 7)0]' 

For E> 0 sufficiently small consider the scalar dif
ferential equation 

whose solutions u(t, E) = u(t, E, to, uo) exists as far as 
ret, to, ua) exists to the right of to' Since 

lim u(t, E) = r(t, to, uo) for all t ~ to' 
e-O 

(3.8) 

Hence to show that the theorem is true, it is sufficient 
to show that 

m(t) < u(t, E), t ~ to' 

Suppose (3.9) were not true (for contradiction). Let 

tl = inf{t Im(t) ~u(t, E), t> ta}. 

Then the continuity of functions m(t) and u(t, E) implies 
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the following: 

m(t) <f u(t, E), to <f t ~ tI , 

m(tI)=u(tl' E), t=t1• 

(3. lOa) 

(3. lOb) 

From (3.10 a, b) and the differentiability of m(t), we 
have 

Dm(tl) =D+m(tl) =D _ m(tl) = lim h-1[m(tl) - m(tl + h)] 
h-O-

= lim h-l[u(t1, E) - m(tl + h)] 

= lim h-I[u(tl' E) - U(tl + h, E)] 
""0 

= U(tI' E) = g(tI , U(tI' E» + E 

>0. (3.11) 

Also, from (3. lOa) and (3.11), we have 

m(tI+s) <fU(tI+S, E) for-r<fs<fO; 

hence 

m(tI) <f sup m(ti + s) <f sup U(ti + s, E), 
-rEs IS 0 -r:::SsEQ 

= U(tI' E) = m(tI)' 

or consequently, 

sup M[V(ti + s, x(to, CPo, 7)a)(tl + s), 7)UI + s» I CPo, 7)a] 
-rEs~O 

=M[V(tl' x(ta' CPo, 7)o)(tI ), 7)(tJ) I CPa' 7)0]' 

which also implies 

x(ta' CPo, 7)O)(ti + s) EA l' by the definition of A 1; 

D+m(tI) = lim h-I[m(ti + h) - m(tI)] 
h-a+ 

= lim h-I~[V(ti + h, x(ta' CPo, 7)a)(t1 + h), 7)(ti + h» I CPa' 7)0] 
h-a+ 

-M[V(tI , CPo, 7)a)(tl)' 7)(tI» I CPa' 7)a]} 

= lim h-I {M[V(ti + h, x(to, CPo, 7)O)(tl + h), 7)(tl + h»1 CPo, 7)0] 
h-O+ 

- M[ V(tl + h, x(to' CPo, 7)O)(tl) + hf(tI' x t ), 7)(tl + h»1 CPo, 7)0] 
1 

+ M[V(tl + h, x(to' CPo, 7)O)(tI) + hf(tl> x t ), 7)(tl + h»"1 CPo, 7) a] 
1 

<f lim h-I~[V(ti + h, X(to' CPa' 7)o}(ti + h), 7)(fl + h» I'" 7)] 
~ ~a 

-M[V(tl + h, x(to' CPa' 7)o}(tI ) + hf(tl' x t ), 7)(tl + h»! CPo, 7)a]} 
1 

+ lim h-I{M[V(tl + h, x(to, CPo, 7)O)(tI) + hf(tl' x t ), 
,...0+ 1 

7)(tl + h)) I CPa' 7)a] 

- M[V(tl , X(to' CPo, 7)o}(tI ), 7)(tI» I CPo, 7)0]}' (3. 12) 

But, since Vet, CP(O),7)(t» is locally Lipschitzian uniform
ly in CP(O), the first term in the above expression be
comes 

- V(tl + h, x(to' CPo, 7)O)(tl) + hf(tl' X t ), 7)(tl + h))] I CPa' 7)a]} 
1 

= ~~ h-I{M[L(ti + h)II(x(ti + h) - X(tI» - f(tI , xtI)II I CPa' 7)a]} 
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.;;0. 

Hence (3. 12) becomes 

D+m(tJ ';;Um h-1{M[M[V(fl + h, x(to' CPo. 110)(tl)+ hf(tl' x, ), 
~+ 1 

'I1(t l + h» - V(tl , x(to. CPo' 110)(tl)' 11(tl» I X(tl). 11(tl)] I CPo,11o]} 

. .;;M[lim h-1[M[V(tl + h, x(to. CPo' 'I10)(t1) + hf(tl • x, ), 11(f1 + h» 
h-O+ 1 

- V(tl • x(to' CPo, 110)(t1)' 11(t1» Ix(tl ), 11(t1)] I CPo' '110] 

=M[D+M[V(f1,x(to, CPo' 110)(t1), 11(f1);Xt )] I CPo' 110] 
1 

or 

D+m(tl ) .;;M[g(fl • V(to' CPo' 110)(f1), 11(tl) ) I CPo, 110]' (3. 13) 

Since g(t,u) is concave in u, we apply Jensen's inequa
lity (see Ref. 3, p. 33), to (3.13); we have 

D+m(t1) .;; g(t1• M[V(tl , x(to' CPo, 110)(tl).' 1}(t1» I CPo, 11oJ) 

=g(t1, m(tl» =g(ll' u(t1, e», 
which contradicts (3.11), that 

D+m(tl) ~ g(t1, u(tl , e» + e for € > O. 

Thus, m(t) < u(t, e), t ~ to; or equivalently 

M[V(t, x(to' CPo,11o)(t), 1}(t)) I CPo, 110] .;; r(t, to, uo), 

f~O. 

(3. 14) 

QED 

The following by-product of Theorem 3.1 will be very 
useful. 

Theorem 3.2: Assume that the hypotheses of Theorem 
3.1 hold except that the inequality (3.4) is replaced by 

A(t)D+M[V(t, cp(O), 'I1(t);cp)] + M[V(t, cp(O), 1}(t» I CPo, 110}D+A(t) 

.;;g(t, Vet, cp(O),1}(t»A(t)} for t~to' CPE;&, 

where A(t) > 0 is continuous on [- r, co). 

(3.15) 

Then, suP_r ... CO V(to' CPo(s), 1}(to»A(to} .;;uo implies the 
estimate 

M[A(t) Vet, x(to' CPo, 1}o)(t), 1}(t)) I CPo' '110] II!> r(t, to, Uo), t:;;. to' 

(3.16) 

Proof: We set 

K(t, cp(O), 'I1(t» =A{t)V(f, CP(O),l1(t». 

Let CPElfl' For small h>O, we have 

K(f + h, cp(O) + hf(t, cp), 1}(t + h» -K(t, cp(O), 1}(t)) 

= Vet + h, cp(O) + hf(t, cp), 1}(t+ h» [A(t+ h) -A(t)] 

+ A(t)[V(t + h, cp{O) + hf(t, cp), 11(t + h» - Vet, cp(O),1}(t))). 

(3.17) 

From (3.17) and assumption (3.15), it follows that 

D+M[K(f, cp(O), 1}(t); cp)] 

= lMJ! sup h-l M[K(t + h, cp«» + hf(t, cp), 11(t + h» 11}(t),cp(O)] 

- K(t, CP(O),11(t»} 
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=A(t) D+M[V(t, cp(O),1}(t)iCP)] 

+ M[V(t, cp(O), 11(t)) I CPo, 11oW+A(t) 

.;;g(t,K(t, cp(O),1}(t)) for t>to' CPEA, 

where 

(3.18) 

A={CPEC I sup M[K(t+ s, cp(s),1}(t+ s»l1}o' CPo] 
.. t'tIIIii&4iO 

=M[K(f, cp(O), 1}(t» 11}0' CPo}} • 

It is clear that K(t, cp(O),1}(t» is uniformly locally 
Lipschitzian in cp(O), and, thus all the assumptions of 
Theorem 3. 1 are satisfied, with K(f, CP(O),11(t» in place 
of Vet, cp(O), 1}(t)). The conclusion is now immediate from 
Theorem 3.1 QED 

4. SUFFICIENT CONDITIONS FOR STABILITY 

The following theorem provides sufficient conditions 
of equistable in mean for the trivial solution x = 0 of the 
stochastic functional differential equation (2.1). 

Theorem 4.1: Let there exist functions V(t, cp(O),1}(t)) 
and g(t, u) having the following properties: 

(a) g E C(R+ xR+, R+), g(t, u) is concave in u for fixed 
t and g(t, 0) = O. 

(b) V EC([ - r, co)xR"xR, W), V(t, cp(O),1}(t)) is locally 
Lipschitzian uniformly in cp(O) and M[V(t, x(to' CPo,l'lo>(t), 
1}(t)) I CPo' '110] is differentiable in f, where x(to' CPo,1}o)(t) is 
a solution of (2.1). 

(c) D+M[V(t, cp(O), 1M}; cp)] ';;g(t, V(t, cp(O), 1}(t))), for 
t> to, CPEAl' 

(d) There exist functions b(t, r), and a(r) where bE S, 
a E 1<., and a is convex such that 

a(1Icp{O) II) ~ V(t, cp(O), 1}) .;;bU, IIcpllo) 

for CPEe and (t, cp(O),1})E [- r, co)xR"xR. 

Then, the trivial solution x=O of (2.1) is equistable in 
mean if the trivial solution u= 0 of (2.2) is equistable. 

Proof: Let x(to' CPo,1'1o)(t} be any solution of (2. 1). 
Choose 

Uo = b(to' II CPo 110) 

so that 

sup V(to' CPo(s), 1'10) ';;uo' 
-rllli.sCO 

An application of Theorem 3. 1 yields 

M[V(t, x(to, CPo, 110)(1), 1}(t)) I CPo, 110] .;;r(t, to, uo), t ~ to, 

where r(t, to, uo) is the maximal solution of (2.2). Also, 
because of assumption (d), we have 

a(lIx(to' CPo' 'I10){t) II) .;; V{t, x(to' CPo, 1}o)(t}, 1}) for aEj(. (4.1) 

Since a is strictly monotone increasing and a is convex, 
it follows, from (4.1), immediately that 

a(M[lIx(to' CPo, 1}o)(t) II I CPo, 1}o]) 

.;;M[V(t, x(to' CPo, 1}0)(t), 1}(t)) I CPo, 1'1oJ· (4.2) 

Now, let € > 0 and to E R+ be given. Assume that the 
trivial solution u= 0 of (2.2) is equi-stable. Then for 
these given a(e) > 0 and foE R., there exists a/)= o(to, e) 
> 0 satisfying 
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u(t, to, uo) < b(€) for t ~ to provided Uo ~ {I. (4.3) 

Moreover, because of the continuity of b{t, r) by (d), 
there exists a {ll=li1(to,e»0 such that 

IICPolio ~ {II implies bUo, IICPollo) < li. (4.4) 

Combination of the facts (4.2), (4.3), and (4.4) implies 

a(M[lIx{to. cf>o, '/}0)(t)1Icf>0' 1)0]) 

Then, the trivial solution x =0 of (2. 1) is equ.istable 
in mean and quasi-equiasymptotically stable in mean 
(hence equiasymptotically stable in mean) if the trivial 
solution U = 0 of (2.2) is equistable. 

Proof: If x(to' CPo,1)o)(t) is any solution of (2.1) such 
that 

we have, by Theorem 3.2, ~M[V(t, x(to' CPo, 11o){t) , 1J(t)) I <1>0' 1)0] 

~ r(t, to, uo) < a(e) for t;" to, 

whenever 

(4. 5) M[A(t)V(t, x(to' CPo, 1)o)(t), 1)(t)) I CPo, 1)0] ~ r(t, to, uo), t;" to' 

Let €> 0 and toE [0, 00) be given. Let 

II CPo 110 < {II' 

which, by the monotonicity of a, also implies 

M[lIx(to' CPo, 11o)(t) II I CPo, 1)0] < e, t ~ to, 

whenever 

QED 

As an extension of previous theorem, we shall have 
the following corollary which is pertaining to the suf
ficient conditions of uniformly stable in mean for the 
trivial solution x=O of (2.1). 

Corollary 4.1: Assume that all the hypothesis of 
Theorem 4.1 hold. Furthermore, assume that b(t, r) 
= b(r). Then the trivial solution x =0 of (2.1) is uniform
ly stable in mean, if the trivial solution u=O of (2.2) is 
uniformly stable. 

Proof: Following the proof of Theorem 4.1, we obtain 
(4.4). Note that {II in (4.4) is independent of to' Thus 
x = 0 is uniformly stable in mean. QED 

An application of one of the comparison theorems 
(Theorem 3.2) yield the following useful result of the 
sufficient conditions of equiasymptotically stable in 
mean. 

Theorem 4.2: Assume that there exist functions 
V(t, <f>(0), '/}(t», g(t, u) and A(t) satisfying the following 

conditions: 

(a) A(t) > 0 is continuous on [- r, 00), and A(t) - 00 as 
t- 00. 

(b) V E C([ - r, 00) x R"XR, R+), V(t, CP(O), 1)(t» is uni
formly locally Lipschitzian in <1>(0), and 
M[V(t, x(to' CPo, 1)o)(t), 1)(t» I CPo, 1)0] is differentiable in t, 
where x(to' <1>0' 'I1o)(t) is a solution of (2. 1). 

(c)gEC(R+xR.,R+), g(t,O)=O, andg(t,u) is concave 
in U, also 

A(t)D+M(V(t, cf>(0), 1)(t);cf»] + V(t, <I>(O),1)(t»D+A(t) 

~g(t, V(t, CP(O) , 'I1(t»A(t», 

for t> to and cP E A, where 

A == {cp E C I-T~eo M[V(t + s, CP(S), 1)(t + s)}A(t + s) 1'110' CPo] 

==M(V(t, <1>(0), 1)(t)}A(t) 1110 , <l>ol}. 

(d) There exists functions a(r)E!< and b(t,r)EB 
where a is convex, such that 

a( IIcp(O)II) ~ V(t, CP(O), '11) ~ b(t, 11<1>110 ) 

for CPE C and (ti <1>(0),1) E [- r, 00) xR"xR. 
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a == min A(t) • 
.. ,. >$t<<<> 

By assumption on A(t), it is clear that a> O. 

Set C == aa( €). Then proceeding as in the proof of 
Theorem 4.1 with this C instead of a(e), it is easy to 
prove that the trivial solution of (2. 1) is equistable in 
mean. 

To prove quasi-equiasymptotically stable in mean, 
given p>O, let C*==aa(p). Let {ll(to'P) be such that 

11<1>0110 < °1 
implies 

M[lIx(to' CPo, '/}o}(t) II I CPo, 1)0] < p, 

for t;" to' 

This is possible by equistability in mean. DeSignate 
lioUo):::: 01(to' p), and suppose that IICPolio < {lo' 

Since A{t) - 00 as t - 00, there exists a positive number 
T:::: T(to' €) such that 

A(t)a(€»C*, t;"to+T. 

We then have, by Theorem 3. 2, (4.2), the fact that 
u(t, to, uo) < C* if U o ~ li(lo, p) and A(t) > 0, 

A(t)a(M[lIx(to' CPo, 1)o)(t) II 1 CPo, 1)0]) 

~A(t)M[V(t, x(to' CPo. 1)o)(t), 1)(t» I <1>0' '110] 

~ r(t, to, uo) 

< C* <A(t)a(e), t ~ to + T. 

Then it follows, from the foregoing enequality, that 

M[IIx(to, <1>0' 1)0)(t»11 CPo, 1)0] < t, t ~ to + T 

provided 

(4.6) 

II CPo 110 < {lo' QED 

5. EXAMPLES 

In this very last section of this paper, we shall con
sider a scalar linear functional differential equation with 
retardation 1)(t, w) and demonstrate the applicability of 
Theorem 4.1 by using two different Lyapunov functions. 

(A) Consider the stochastic functional differential 
equation 

x(t)=X(t) t x(s)ds, (5.1) 
t-~(t) 

where .\.(t) > 0, 0 ~1)(t) ~ r, and .\.(t}1j(t) ~ k(t)EL1[0, 00). 

Let 

Al=={CPECI sup V(t+s,CP(s),1)(t+s» 
-r ...... O 
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= vet, cf>(O),l1(t»} 

Now choose a Lyapunov function 

V(t,x,l1)= Ixl. 

Therefore 

V(t,X,lI)= d~ Ix(t)1 ~ IX(t) I, 

~'A(t)r Ix(s) Ids, 
t-~( II 

~ iI.(t}1J(t) sup ,x(s) ,. 
-rllll&s4lliO 

Hence, from (5.2), we have 

V{t, x, 11) ~ iI.(t)lI(t)V(t, x, 11) 

~ k(t)V(t, x, 11) for x t E A1' 
Now choose 

g{t, u) == k(t)u. 

(5.2) 

(5.3) 

(5.4) 

(5. 5) 

Therefore, the trivial solution us 0 of the scalar dif
ferential equation 

u(t) = g{t, u(t» s k(t)u, uo ;;' 0 (5.6) 

is uniformly stable, which in turn (by Theorem 4. 1 and 
Corollary 4.1) implies the trivial solution xsO of (5.1) 
is uniformly stable in mean. 

(B) Again, consider the same stochastic functional 
differential equation as (5. 1) 

~(t)=iI.(t)t x(s)ds, (5.7) 
t-~( t) 

where iI.(t) > 0, 0 ~lI(t) ~ r and we have further assump
tion on 1I(t) and iI.(t) such as 

'A(t}1J(t) + [D7)(t)/l1(t) + 1] ~h(t)E L1[0, 00), (5.8) 
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where D7)(t) slim M[h-1(11(t + h) -1I(t» 171(t) = 11l. 
"'0 

Notice that Dl1(t) as defined above is a function of t 
and 11. i. e., D7)(t) =/(t, 11)· Now, choose a Lyapunov 
function V(t, x, 1) as 

v(t,x, 11) = IxlF'1(t)+ 1]. 

Then 

D+M[V(t, x(t), 1)(t))] 

= !t I x(t) I [1I(t) + 1] + I x IDl1(t) 

~ Ix{t)I [lI(t) + 1]+ IxlDlI(t) 

~ iI.(t}1J(t)V(t, x, 11) + {DlI(t)/[1)(t) + 1]} V(t, x, 1) 

= (iI.(t}1J(t) + {DlI(t)/[1)(t) + 1]}) Vet, x, 11) 

(5.9) 

~ h(t)V(t, x, 1). (5. 10) 

Choose get, u) = h(t)u. 

The same conclusion we have, as in (A) that the trivial 
solution u sO of 

it(t)=g(t, u) sh(t)u, uo;;'O 

is uniformly stable. 

(5. 11) 

Hence, the trivial solution xsO of (5.7) is uniformly 
stable in mean. 

i E.A. Lidskii, Differ. Uravn. 1,1 (1965). 
2V. Lakshmikantharo and S. Leela, Differential and Integral 
Inequalities (Academic, New York, 1969), Vol. II. 

3J. L. Dooh, Stochastic Process (Wiley, New York, 1953). 
4J. Hale, Functional Differential Equations (Springer-Verlag, 
Berlin, 1971). 



                                                                                                                                    

Application of cumulant techniques to multiplicative stochastic 
processes 
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The use of cumulant techniques for analyzing time dependent, stochastic matrix expressions of the 
form < T exp(f~B(S)d S] > is explained. Because cumulants are complicated expressions when B( t ) 
does n;rt commute with itself at unequal times, we explicitly work out cumulant expressions up to 
fourth order. The fourth order terms can be used to demonstrate that noncommutivity prevents the 
generalization, to time-dependent, stochastic matrices which do not commute with themselves at 
unequal times, of the result which applies to commuting stochastic processes that states: If the 
stochastic process is Gaussian, then its cumulant expansion truncates after the second cumulant. 
Furthermore, it is argued that if the stochastic matrix process is both Gaussian and purely random 
then the cumulant expansion does truncate after the second cumulant, after all. The significance of 
this result with respect to the application of approximation involving cumulants is mentioned. 

INTRODUCTION 

It is the purpose of this paper to apply cumulant tech
niques to the analysis of multiplicative stochastic pro
cesses. 1 When the stochastic matrices, which appear in 
the differential equations defining a particular multipli
cative stochastic process, have special properties, the 
use of cumulants can lead to significant simplifications 
in the analysis of solutions to the differential equations. 
In general, when no special conditions are imposed on 
the properties of the stochastic matrices, cumulant ex
pressions contain all of the information of the original 
problem, but without any particular advantages for 
further analysis. Kub02 has introduced cumulant tech
niques for the study of multiplicative stochastic process
es, and he has attempted to approach the problem in as 
general a setting as possible. Fox1 has studied multipli
cative stochastic processes without using cumulant 
techniques, and has restricted his approach to the prob
lem to the use of stochastic matrices which are purely 
random and Gaussian. It will be demonstrated in this 
paper that the restriction to purely random, Gaussian, 
stochastic matrices corresponds with the special condi
tions alluded to earlier for which cumulant techniques 
are most useful. 

In the course of this paper we will show how the 
utility of cumulant techniques is related to the Gaussian 
property of the stochastic matrices. When the stochastic 
matrices are time independent, the Gaussian property 
alone guarantees major simplifications in analYSis if 
cumulants are used. When the stochastic matrices are 
time dependent and do not commute for unequal times, 
then the Gaussian property alone is insuffiCient, and 
must be augmented by the purely random property if 
efficacy is to be achieved using cumulant methods. It is 
this last point that reqUires emphasis when one is using 
approximation methods which rely upon cumulants 
expansions. 

TIME ORDERING AND CUMULANTS 

Consider a multiplicative stochastic process de
scribed by1 

d -
dt a",(t) = A",,,,.a,,,,(t) + A",,,,.(t)a,,,.(t) (1) 

in which A",,,. =-A".", A"".(t)=-A".",(t), A"".(t) is a 

stochastic matrix with averaged value zero, a 
= 1, 2, ... ,N, and repeated indiceS are summed. If 
A"",.(t) had a nonzero averaged value, we could include 
its avzraged value in the term A"a' and start over again 
with Aa",.(t) - (Aa",.(t» as the stochastic matrix, where 
( , .. ) denotes stochastic averaging. We would then have 
a process such as described by (1) with the average val
ue of A"",.(t) equal to zero. A useful manner for obtain
ing the solution to (1) is to use the transformation 

a", (t) = [exp(tA) ]a a • b a'( t). (2) 

Consequently, the b",'s satisfy 

d -
dt b",(t} = [exp(- tAl ]",sAss.(t} [exp(tA) ]s'a .b".(t} 

==B"",.(t)b",.(t} (3) 

where the second equality defines B(t}. Note that the 
averaged value of 8(t} is zero since it is linear in the 
matrix elements of A(t). In general, A and A(t) will not 
commute, neither will A(t} and A(s) nor 8(t} and 8(s) 
for Us. 

The formal solution to (3) must be written with a time 
ordered exponential3 defined by 

b,,(t} = [! exp(j/ B(s} ds) ]"".ba.(o} 

== t (t r t1 r t2 •• , r tn-2 (tn·l [B (t }iJ (t ) , .. 
... 0 Jo Jo Jo Jo Jo "1'1 1 I'll' 2 2 

BUn -2l'n.1(tn.1)Bl'n.1".(t,,)] dtn dtn•1 ... dt2 dt1b".( 0) 

(4) 

where the n = 0 term is defined to be 1. If B(t} and B(s) 
commuted for t* s, then (4) would reduce to an ordinary 
exponential 

.. 1 it it - -6, "'n'" [Ba l'l(Sl}" .Bl'n.l",(Sn)]dSn•• ·dS1b a.(0}. 
ncon, 0 0 

. If B(t) is in fact time independent, then all time integra
tions are easily performed giving the ordinary 
exponential 

Cumulants arise when one wishes to perform the 
stochastic average of an expression like (4) or its more 
simple forms given above, at the end of the preceeding 
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paragraph. Historically speaking, cumulants arose in 
statistics and were known as Thiele semi-invariants. 4 

Suppose that we have a time independent stochastic 
variabl~ X and we are interested in calculating (exp(X), 
where X may be either a scalar or a matrix stochastic 
quantity determined by the distribution function for 
its values. The cumulants for X are defined by 

(exp(X) =J.t n\ (i)';;...= ~ 1-, «X)n) 
\~-o. I ~n. 

== exp(t n\ «i)n» 
n-=l. cJ 

where ( .. ·)c denotes the cumulant average. Cumulant 
averaging is by definition a homogeneous process with 
respect to multiplication of X by a constant, just as is 
the case with ordinary averaging. Therefore, «AX}n)c 
= An«X)n)c, and 

(exp(AX}) = exp .0 I" «i)n)c . G
'" An ) 

n-1 n. 

(5) 

(6) 

Differentiating (6) n times with respect to A, followed by 
setting A= 0, gives for n = 1, 2, 3, 4, ... 

($)= (X)c, 

«X)~ = «X)~c + (X)~, 

«X)3) = «X}3)c + 3«X}2)c(X)c + ($);, (7) 

«(i)4) = «(X)4)c + 4«(X)3)c(X)c + 3«i)~: + 6«(X)~c(X)~ + <.X>: 

Starting with the first lille, these equations may be suc
ceSSively inverted to give expressions for cumulant 
averages in terms of ordinary stochastic averages: 

<X>c=<X>, 
«X)~\ = «X)2) - (X)2, 

(8) 
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«X)3}c = «X)3) - 3«X)Z)<i) + 2<i)3, . 

«.K)4)c = «X)4) - 4«X}3)(X) - 3«X)2)a + 12«X)Z)(X')3 _ 6(X)4 

It is possible to define cumulants even when we are 
dealing with time-dependent stochastic matrices which 
do not commute at unequal times. 2 One gets time
ordered cumulants defined by 

(!exp(rB(S)ds»==!exp(~ J;/ 10',1 fo'a ... fo'n-2 fo'n-1 

X(B(t1)B(ta) ... B(tn_1)B(t,,)c 

xdtndtn_1·· . dtadt1) . (9) 

Because it is so easy to miSinterpret the precise mean
ing of (9), we introduce here the following notational 
scheme which permits unambiguous rendering of (9). 
Define g~nJ(t1) by 

(10) 

Therefore, 

(r. exp(fot D(S) dS))= ! exp(~ lot g(nl(t1) dtl). (11) 

As before, we can introduce a parameter A, and using 
(10) leads to 

Differentiating (12) with respect to A, n times, followed 
by setting A=O, gives for n= 1,2,3,4, ... 
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Again, especially notice the limits of integration in 
several of the terms which contribute to the third and 
fourth order expressions. By studying the special cases 
in which either B(t) commutes for unequal times, or B 
is time independent, it may be shown that (14) reduces 
to (8), and (13) reduces to (7). It should by now be clear 
how to obtain the higher order cumulants for S(t) when 
it does not commute with itself for unequal times, even 
though the expressions become quite complicated. 

THE GAUSSIAN PROPERTY 

Throughout this discussion of the Gaussian property, 
it is convenient to invoke the condition that the averaged 
value of B(t) is zero. This simplifies considerations 
without loss of generality, as was explained at the be
ginning of the last section. The analogous condition for 
it is that (£; = O. 

Suppose that it is Gaussian with averaged value zero. 
Then it is known that the moments of X satisfy5 

«X)211t+l) = 0 for m = 0, 1, 2, ... , (15), 

«X)ZIIt) = 1 X 3x5 X· •. x(2m - 1)«X)Z)1It for m = 1,2, •• '. 

If we return to (8) we see that 

<X>c=O, «X)Z)c=«X}Z), 
(16) 
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The last result follows from the cancellation of the two 
nonvanishing terms: «£;4) and - 3«£;2)2, as may be 
seen using the second equation in (15). It may be proved 
generally that all cumulants of order higher than four 
also vanish. The proof may be performed by the method 
of induction. We assume it is true that except for the 
nonvanishing, second order cumulant, all cumulants up 
to and including order 2m for m > 2 vanish. We shall 
now show that cumulants of order 2m + 1 and 2m + 2 also 
vanish. 

The cumulant of order 2m + 1 will be expressible as 
an expansion in terms of the moments of X up to order 
2m + 1 as is indicated by (8). The leading term will be 
«X)2m+l) which is zero according to (15). All other terms 
in the expanSion will involve products of lower order 
moments in which at least one factor is an odd order, 
lower than 2m + 1 order moment. By (15), such moments 
vanish and we conclude that «X)2m+l)c= O. 

The consideration of the cumulant of order 2m + 2 is 
best pursued using the relationships given by (7). These 
relationships show that «X)211t+2) may be expressed in 
terms of cumulants of order less than or equal to 2m 
+ 2. The Gaussian properties given by (15) show that 
«X)2m+2) is nonvanishing. Its expansion, according to 
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(7), in ter~s of cumulants begins with «i)2m+2)e, which 
we wish to compute, and involves other terms, each of 
which is a product of lower order cumulants. By 
hypothesis, all lower order cumulant, except the second 
order and 2m + 1 order cumulants, vanish, and we have 
already seen that the cumulant of order 2m + 1 also 
vanishes. Therefore, all products vanish except the 
single term which is the product of m + 1 second order 
cumu!.ants. Therefore, it follows that «i)am+2) == «X}2m+2)e 
+ C«X)2):+l where C is a coefficient which has to be de
teE-mined. Looking at (6), it may be seen that the 
«X)2):+1 term comes from the m + 1 term in the expan
sion of the exponential on the right-hand side of (6). 
Such a term has a factor of l/(m + I)! associated with 
it. Each factor of «i)2)e has associated with it a factor 
1/21 as is directly evident in (6). Therefore, «X)a);;,+l 
will have a factor, overall, of [1/(m + 1) 1 ](1/21 )m+l. 
This must be multiplied by (2m + 2) 1 to get C as a re
sult of the 2m + 2 fold differentiation of ,\am+a. Conse
quently, C == (2m + 2) 1 /(m + 1) 1 2m+l. Using (15), it is 
seen that «X}2m+2) == 1 x 3 x 5 x ... x (2m + 1) «X) 2)m+l . 
Therefore, 

«X}am+a)e == 1 x 3 x 5 X· •• x {2m + l)«i)a)m+l 

(2m + 2) 1 ({X)- 2\m+l 
(m + 1) ! 2m+l Ie 

== 0 (17) 

since «X) 2) == «2)a)e. This completes the proof. 

The conclusion is that if X is Gaussian, with aver
aged value zero, then 

(18) 

which is especially simple. The cumulant expansion re
duces to a single term! 

Before attempting to generalize this result for con
sideration of stochastic matrices which do not commute 
for unequal times, it is worthwhile to observe that if 
X is replaced by a scalar, time dependent stochastic 
quantity, F(t), then the Gaussian property again leads to 
great simplifications. We make this digression in order 
to point out that time dependence, per se, does not 
lead to complications. The complications which will 
arise in our discussion of stochastic matrices, which 
depend upon time but which do not commute for unequal 
times, come from the noncommutivity. 

Suppose F{t) has averaged value zero, and is Gauss
ian. It can then be shown that6 

(exp[fot F{S) dsD == exp[1- Jr/ fot (F{Sl)F(Sa» dSl dSa]· 

(19) 

Equation (19\' '-he time dependent generalization of (18) 
for a time-dt-tJendent, scalar, stochastic process. 
Again, the cumulant expansion reduces to a single term. 

The generalization of this result to time-dependent 
stochastic matrices which do not commute at unequal 
times cannot be made. The Gaussian property for B(t) 
is expressed byl 

(ii" 1~1 (tl) ... ii" am+l~am+l (tam+l» == 0 for m == 0, 1, 2, ... , 

(20) 

J. Math. Phys., Vol. 15, No_ 9, September 1974 

1482 

IT B"p(aJ -1)~ p(ai -1)(tP(Zi-l »B" P(Zi)~ p(ZJ) (tP(2J I»~ XI ~ m (- -
p- Sam i-I 

for m == 1 2 ... 
where L/JES2m is the sum over all pe~mutations p in the 
symmetric group of ord~r (2m)!, S2m' Even though we 
can think of a Gaussian B{t) in the sense of (20), the 
Gaussian property alone will prove insufficient for the 
reduction of (9) to E- form analogous with (18) or (19). It 
is necessary that B(t) be Gaussian and purely random 
in order to write 

(1: exp[jot B(S) dsD == ! exp[fot fo t1 (B(tl)B(ta» dtadt1]. 

(21): 

The purely random property is defined byl 

(BaB(t)ii,,~(S» == 2QaB".I5(t - S) (22) 

in which the time delta function characterizes the purely 
random property. Defining Raa by Raa '" Qa99B, wherein 
summation over e is implicit, Eq. (21) becomes 

(1: exp(fo t B{S) dSDaB == [exp(Rt) JaB (23) 

which is especially simple. We shall now proceed to 
demonstrate why Gaussianness alone is insuffi,cient for 
the justification of (23) or (21). 

That Gaussianness alone does not result in the vanish
ing of all but the second order cumulants of B(t) may be 
s~en by studying (13) and (14). First of all, because 
(B{t» == 0 is assumed, the expressions in (13) and (14) 
simplify greatly. We get immediately 

(t -
Jo (BaB(t1»e dt l == 0, 

(t (tl - -
Jo Jo (Ba" (tl)B,,a(ta»e dtadtl 

== fot fo tl 
(iia" (tl)ii"B{ta» dtz dtl> (24) 

fot Ir/l fota(Ba"l(tl)ii"l"a(ta)B"aits»e dtsdtadtl:::: O. 

Differentiation of these equations with respect to time 
leads to equations for the integrands. Difficulty arises 
with the fourth order term. From (14) we get 

fot fo t1 
fo ta fo ts (ii",,, /t1)B" 1" z(tz)iJ" a"a<ts)B", s8(t4»e 

X dt4 dt3 dta dt1 

_ (t (tl (ta (tS(- ()- ()- ()ii (» 
- Jo Jo Jo Jo B"'''l tl B"llLa ta B lLzlLs t3 "38 t4 

X dt4dtsdtadtl 

_ fot fo tl Jotl fot a (iia"l(tl)ii" 1" a(Sa» 

X (iJlLa"s(tZ)B"sB(Ss» dSs dtzdSadtl . (25) 

It can be seen that this is nonvanishing if S{t) is not 
purely random by considering the special case in which 

(BaB(t)ii,,~(S»== 2QaB,,~cp(t - S), (26) 

wherein cp(t - S) is not a delta function, but instead is 
nonvanishing for nonzero values of It - S I. For example, 
cp(t - S) may be proportional to exp( - O! I t - S I). Using the 
two symmetries Qa61L~= Q,,~a6 and cp(t - S) = cp(S - t), 
the Gaussian property, as expressed by (20), leads to 
the following expression for (25): 

fot Jo t
l fot a fot s <Ba "l(tl)ii" l"a(ta)ii"z"/ts)B,, sa(t4»e 

X dt4 dt3 dta dtl 
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= 4 fc/ Jo
l
1 fc/2 

JoIS{Q",I' 11' 11'2QI' 21' SIL s8CP(t1 - t2)cp(ts - t.) 

+ Q", 1'11'21' S QI'Il' 21' 38CP(t1 - t3) CP(t2 - t4) 

+Q"' .... 8Q .... 1'1' CP(t1-t4)CP(t2-ts)}dt4dtsdt2dt1 
~1~3 ~1~2 2 3 

- 4 Jot Jotl J/1 J/2 Q"'I'11' II' 2QI' 21' 31's8CP(t1 - S2)CP(t2 - S3) 

xdS3 dt2 dS2dtl • (27) 

The factors of 4 come from 22 as indicated by (26). The 
negative term is the negative term in (25) replaced by 
(26). The three preceeding positive terms are the m = 2 
case of the second equation in (20). There are 24 permu
tations to sum over, but only three distinct terms occur 
as a result of the two symmetries mentioned above. On
ly the first positive term in the right-hand side of (27) 
contains a matrix expression which matches the matrix 
expression of the negative term. The other two positive 
terms cannot be cancelled out at all! However, if 
cP(t - S) :; B(t - S) then study of these extra two terms will 
show that their integrals vanish as a result of the time
ordered upper limits of integration, 7 and the remaining 
positive and negative two terms will exactly cancel! 
When cp(t - S) '#6(t - S), the above vanishing of integrals 
and cancellation of nonvanishing integrals fails to occur. 

That the purely random property ultimately leads to 
(23) will not be proved here since it has been proved in 
another paper. I However, here it has been shown that 
without the purely random property, already the fourth 
order cumulant will not vanish for time dependent 
stochastic matrices which do not commute at unequal 
times. Consequently, the cumulant expansion will not 
truncate to a single term, but will involve all even 
order cumulants. Thus, no real simplification is 
achieved using cumulants. 

APPROXIMATION PROCEDURES 

Various phYSical problems involve computation of a 
quantity of the form 

<!exp[fotO(S)dS]), (28) 
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wherein O(S) is an operator parameterized by S, which 
mayor may not be the time variable, and < ... > denotes 
some kind of averaging such as a canonical average 
over some or all of the variables O(S) depends upon, or 
a ground state expectation value, or some other "aver
aging." Many times one sees in the literature the in
troduction of cumulant techniques in order to handle the 
computation of (28). Often it is argued that to good ap
prOximation O(S) behaves as if it were Gaussian, and 
then the cumulant expansion is truncated after the sec
ond cumulant. However, the validity of such approxima
tions also reqUires that it be demonstrated that to good 
approximation O(S) behaves as if it were also purely 
random. Then, and only then, the truncation of the 
cumulant expansion is a good approximation. 

One application of this kind of approximation proce
dure in which both Gaussianness and pure randomness 
were considered has been presented by the author in 
another paper. 6 
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A classification of second-order raising operators for 
Hamiltonians in two variables 
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We develop a group theoretic method based on results of Wintemitz et al. to compute and classify 
all first- and second-order raising and lowering operators admitted by Hamiltonians of the form !! 
= -(I /2)/:).2 + V (x, y). The key to our results, which generalize to higher dimensions, is a proof that 
!! admits a second-order raising operator only if the SchrOdinger equation separates in Cartesian. 
polar. or elliptic coordinates. 

INTRODUCTION 

We call an operator R a raiSing operator for a 
Hamiltonian!!. if [!!,~F~, where ~ is a nonzero real 
constant. If l/J is an eigenvector of H with eigenvalue 
jJ., Hl/J = jJ.l/J, it follows easily that H(Rl/J) = (jJ. + ~)Rl/J. Thus, 
kno-;ledge of ~ permits one to obtain new eigenvalues 
and eigenvectors of !!. from old ones. 

In this paper we give a complete classification of all 
potentials occurring in the two-dimensional time inde
pendent Schrodinger equation !!.l/J= jJ.l/J which admit first
and second-order raising operators. The classification 
of first-order operators is almost trivial, and it is only 
the second-order case which presents difficulties. 
Moreover, as one can see from the results of Secs. 2 
and 3, there are very few potentials admitting second
order raising operators, and all such potentials are 
generalizations of the harmonic oscillator. 

The principal interest in our results lies in the fact 
that they are exhaustive and in the method used to ob
tain them. Proceeding directly, one can show that a 
Hamiltonian admits a second-order raising operator if 
and only if the corresponding potential V satisfies the 
system (2.8)-(2.10) of second-order overdetermined 
partial differential equations. However, while one can 
easily find some solutions of these equations, it is 
extremely difficult to determine when one has found all 
solutions. We have not been able to solve these equa
tions directly. 

In order to solve (2. 8)- (2. 10) we have adopted an 
indirect method based on results of Winternitz et al., 1 

which relates this problem to the Euclidean group E(2). 
In Ref. 1 the authors show that H admits a second-
order symmetry operator if and-only if the correspond
ing Schrodinger equation separates in Cartesian, polar, 
parabolic, or elliptic coordinates. In this paper we 
show in essence that if H admits a second-order raising 
operator, then it also admits a second-order symmetry 
operator, hence that the Schrodinger equation must sep
arate in Cartesian, polar, or elliptic (but strangely, not 
in parabolic) coordinates. This means that we can re
strict ourselves to a search for solutions of (2.8)-(2.10) 
which separate in one of these three coordinate systems. 
In this case (2. 8)- (2. 10) reduce to systems of ordinary 
differential equations which, though tedious to solve, are 
tractable. Thus we obtain a complete solution to our 
problem. 

Our method can be generalized to the more interesting 
three-dimensional case2 as well as to other types of dif-

ferential equations, for example, wave eq1lations or the 
time dependent Schrodinger equation. 

The results of Refs. 1,2, and this paper show the in
timate connection between second-order raising and 
symmetry operators and the separation of the Schro
dinger equation in some coordinate system. It appears 
that higher-order operators will not be of great interest 
unless and until one can find similar indirect means of 
characterizing them. 

The paper is organized as follows: In Sec. 1 the prob
lem of first-order raiSing operators is solved, while in 
Sec. 2 the problem for second-order operators is form
ulated as a system of overdetermined second-order 
partial differential equations. We then obtain some 
solutions, but not the most general class which must 
await the fUrther development of the connection with 
separation of variables in Sec. 3, where we complete 
our classification of all solutions. Finally in Sec. 4, 
we give the action of the raising and lowering operators 
on a basis of eigenfunctions of the SchrOdinger equation 
for each case. 

1. FIRST-ORDER OPERATORS 

Let H be the formal Hamiltonian 

!!. = - t(o= + Oyy) + V(x, y) (1. 1) 

acting on the Hilbert space L 2(R2) of square integrable 
functions in the plane. Here V(x,y) is a real-valued 
thrice- differentiable function of (x, y) to be determined. 
We search first for all Hamiltonians which admit a 
first-order raiSing operator R, i. e., we look for all H 
which satisfy -

[!!,~]=~, 

where ~ is a nonzero real constant and ~ is a first
order partial differential operator 

(1. 2) 

~= Ql(xy)ox+ 02(x,y)Oy+ Qa(.x,y), 10 1 12 + 1 Q 2 121o. 
(1.3) 

Without loss of generality, we can assume that R is 
real, i. e., that 01> 02, 03 are real-valued functions. 
Substituting (1. 1) and (1. 3) into (1. 2) and equating co
efficients of 0=, OXy, Oyy, Ox, Oy, 1 on both Sides of the re
sulting expreSSion, we obtain the conditions 

1\°1::: Oy02 = 0, 0x02 + Oy01 = 0, 

(0= + Oyy) 01 + 20xQa + 2~01 = 0, 

(1. 4) 

(1.5) 

1484 Journal of Mathematical Physics, Vol. 15, No.9, September 1974 Copyright © 1974 American Institute of Physics 1484 



                                                                                                                                    

1485 C.P. Boyer and W. Miller Jr.: Second-order raising operators 1485 

(an; + Oyy) a 3 + 2ai 0xV + 2a2oy V + 2~a3 = O. (1. 6) 

It is easy to show that these equations have solutions if 
and only if 

V(x,y) 

(1. 7) 

Here, a, b, c are real constants with a2 + b2 > 0 and! is 
an arbitrary real differentiable function. The raising 
operator is then 

!i=aox+boy-A(ax+by)+c. (1.8) 

By a simple translation and rotation of the (x, y) co
ordinates we can obtain new Cartesian coordinates X, Y 
in which 

V(X,Y)=g(X)+h2y 2, !i=oy-~Y, (1.9) 

where g(X) is arbitrary. In these coordinates the 
Schrodinger equation 

!!1/!(X, y) = J-L1/!(X, y) (1.10) 

has solutions of the form 

1/!",n=exp(-jAjy2/2}Hn(v'iITy)G(X), n=0,1,2, .•• , 

(1. 11) 

where Hn is a Hermite polynomial3 and G(X) is a square 
integrable solution of the equation 

G"- 2g(X)G=[- 2J-L + IAI (2n+1)]G. 

It follows easily that 

R1/! J-v'iIT1/!IJ,+>..n+i if A>O 
- ",n l2nfW1/!,,+>.,n_i if A<O. 

(1. 12) 

2. SECOND·ORDER OPERATORS 

Next we consider the more interesting problem of 
computing those Hamiltonians!! which admit a second
order raising operator !i: 

!i = ai axx + 0!2 0xy + a3ayy + a4ax + Q!50y+ as. (2. 1) 

Here aj(x,y) is a real function of (x, y) and ai + a~ + ai 
> O. Substituting (1. 1) and (2.1) into (1. 2) and equating 
coefficients of the third-order and second-order deriva
tives, we obtain equations for Q!i> ••• , a5 which can easi
ly be solved to yield 

ai=-Aiy+A4, a 2=Aix+A2y+A3, a3=-A2x+A5, 

a 4= M ixy - M2y2 - MsY - M 4x -AeY +As' (2.2) 

Q!5 = - MiX2 + M 2Xy - MsY +Asx +Ar, 

where the Ai are real constants. The constraints on as 
and V are obtained by equating coefficients of ax, Oy, and 
1 in (1. 2): 

i(oxx + Oyy)Q!4 + ax as + 2Q!i ~ + Q!2 Vy= - AQ!4, 

i(oxx+ Oyy)Q!5 + OyQ!s + Q!2 ~ + 203 Vy= - AQ!5, 

Relations (2.3) and (2.4) yield 

oxQ!s = - 2Q!i ~ - Q!2 Vy - AQ!4 +A2A, 

OyQ!s = - 02 ~ - 2Q!3 Vy - AQ!5 +A i A. 
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(2.3) 

(2.4) 

(2.5) 

(2.6) 

Substituting (2.6) into (2.5), we obtain an expression for 
the multiplier Q!s in terms of V: 

2AQ!s = (Ai - 2Q!5) Vy + (A2 - 2Q!4) ~ + A2(AiY +A2X - A4 - A 5)· 

(2.7) 

Equations (2.3) and (2.4) may not be consistent with 
(2.7). To guarantee consistency, we differentiate (2.7) 
to compute oxQ!s, ayQ!s and substitute into (2.3), (2.4). 
This yields the consistency conditions for the potential: 

(A2 - 2Q!4) ~x + (Ai - 2(5) Vyx + 6AQ!i ~ - 2(axQ!5 - AQ!2) Vy 

(2.8) 

(A2 - 2Q!4)Vyx + (Ai - 2Q!5) Vyy - 2(OyQ!4 - AQ!2)~ + 6XQ!3 Vy 

= - 2A205 + A2A i • (2.9) 

Thus, corresponding to any choice of the constants 
Ai> ••• ,As, the Hamiltonian admits the raising operator 
R, (2,1), (2,2), provided that V satisfies the partial 
differential equations (2.8) and (2.9). The multiplier Q!s 
for!i is given by (2. 7). 

We can obtain another consistency relation for V by 
differentiating (2.8) with respect to x, differentiating 
(2. 9) with respect to y, and subtracting the second 
equation from the first: 

(Aix +A2y +A3) Vxx + 2 (A iy - A 2x - A4 +A5) ~y 

- (Aix +A2y +A3) Vyy + 3Ai ~ - 3A2 Vy 

= - A(- 3AiAx + 3A2AY + M3 + 2As). (2.10) 

Although (2.10) is a consequence of (2.8) and (2.9), it is 
useful in its own right. 

In conclusion, to find the potentials V admiting rais
ing operators, we must solve the system (2.8)-(2.10) 
of overdetermined second order partial differential 
equations. 

To simplify the solution of these equations, let us 
consider the action of the Euclidean group E(2). Under 
the action of a Euclidean transformation the coordinates 
(x,y) go into new coordinates (x',y'), where 

x' =X cose/> +y sine/> +a, e/>, a, b ER, 

y'= -xsine/> +y cose/> +b. 
(2.11) 

Since Euclidean transformations preserve the Laplace 
operator, we have 

- i(ox'x' + o~ ~) + V(x', y') = - i(on+ Oyy) + V' (x, y), 

where V'(x, y) = V(x', y'). Thus the Hamiltonian His 
transformed into a new Hamiltonian!!' = - i(axx"+ Oyy} 
+ V'(x,y}. Similarly the raising operator R is trans
formed into a new raising operator !i' satisfying [!!',!i'] 
= AR'. Considering the set M of all pairs {V,R} which 
satisfy (1. 2), we see that E(2) acts on M as atrans
formation group. We will consider two solutions of 
(1. 2) as equivalent if one solution can be obtained from 
the other by a transformation (2. 11), i. e., if both solu
tions lie on the same E(2) orbit. Clearly, it will be 
enough for us to find a solution, if one eXists, corre
sponding to a single point on each orbit. 

For the orbit analysis we make use of (2. 1) and (2. 2) 
to write a general raising operator as 
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(2.12) 

where 

These Case 2 solutions of (2.8)- (2. 10) are easy to 
find. Indeed, assuming that !i = ~AJ.2J + a 6 and V are 
Case 2 solutions, we can use (2.19) to require Al =A2 
=A3=0. Then (2.10) becomes 

2(A5-A4)~:v=-2M6' (2.20) 
(2.13) Suppose first that A5 - A4 *" O. Then (2. 20) has the general 

.24 = P~ - 7IxPb .25 = P~ - >..yP2, .2s = M, .27 = P2, .2s = Pl' solution 

Here, 

(2.14) 

are the basis operators for the Lie algebra action of 
E(2). We see that the pure differential operator compo
nent of R is described by the vector (At. • •. ,As) and 
that theaction of E(2) induces an orbit structure on the 
set of all such vectors. A direct computation shows that 
a rotation through the angle 0 [Eqs. (2.11) with a= b= 0] 
transforms (AJ) into (Ai) with 

Af = cosO Al + sinO A 2, A~ = - sinO Al + cosO A 2, 

A~ = cos20A3 + sin20 (A4 -A5), 

A~ = - SinO cosOA3 + cos20A4 + sin20A5, 

A~ = sinO cosOA3 + sin20A4 +cos20A5, 
(2. 15) 

A~ = >.. sin20A3 - >..sinO cosOA4 + >.. sinO cosOA5 +As, 

A~ = cosO A7 + sinO As, A~ = - sinO A7 + cosO As. 

Similarly, the translation x - x + a yields 

Af=Aj, A~=A2' A~=aAl +A3' 

A~=A4' A~=-aA2+A5' 

A~ = - 2aMl +As, A~ = - a2Ml + aAe + A 7 , 

A~ = - aM4 +As, 

and the translation y - y + b yields 

Af =Aj, A~ =A2' Aa = bA2 +A3' A~ = - bAI +A4' 

(2.16) 

A~ =A5, A~ = bM2 +As, (2.17) 

A~ = - bM5 +A7' A~ = - b2M2 - bM3 - bAs +Aa. 

Using these results, we will choose a point on each 
E(2)-orbit. We start with a general operator ~AJ.2J' 
Noticing that A~ +A~ is an E(2)-invariant, we see that 
there are three cases: 

Case 1: Ai +A~ > O. 

Case 2: Al =A2 = 0, A~ +A~ +A~ > O. 

Case 3: A I =A2='''=A5=0, A~+A~+A~>O. 

In Case 3, R is first order and has already been treated 
in Sec. 1. iIi Case 1 we can perform a rotation so that 
Af> 0, A~ = 0 and then translate so that As =A4' = O. Thus 
the vectors (AJ) of the form 

(2.18) 

cut each Case 1 orbit exactly once. In Case 2 we can 
perform a rotation such that Aa = O. Thus, vectors of the 
form 

(2.19) 

cut each Case 2 orbit at least once. 
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v = - [MsxY/(A5 - A4)] +/(x) +g(y) , 

where / and g are arbitrary. Substituting this solution 
into (2.8) and (2.9), we find As = 0 for consistency, and 
so V = /(x) +g(y). If both A4 and A5 are nonzero, we can 
perform translations (2.16), (2.17) to achieve A7 =As= O. 
Thus Eqs. (2.8), (2.9) reduce to 

x/" + 3f' = >..2X, "1Ig" + 3g' = >..2y 

with general solution 

>..2 a b 
V(x,y) = g(X2+y2) + x2+ y2+C, a,b,cE R, 

(AJ) = (0, 0, 0,A4,A5, 0, 0, 0), A4,A5 *" 0. 

(2.21) 

If A 4*"0, A 5=0, we can perform a translation (2.16) 
to achieve As = 0. Then Eqs. (2. 8), (2. 9) reduce to 

xf" +3/'= >..2X, (g"->..2)A7=0 

with solutions 

>..2 a 
V(x,y) = g(x2+4y2) + x2+by+c, 

(2.22) 

and 

>..2X2 a 
V(x,y) = -8- + ~ +g(y), g(y) arbitrary, 

(2.23) 
(AJ) = (0,0, O,Ah 0, 0, 0, 0), A4 *"0. 

The cases A5 *" 0, A4 = ° are identical to (2.22), (2.23) 
with x and y interchanged. 

Finally, suppose A4 = A5 *" 0. Then (2. 20) yields As = 0, 
and by applying translations (2.16), (2.17) we can 
achieve A,{=As=O. Thus Eqs. (2.8), (2.9) reduce to 

with general solution 

V(x, y) = ~2 (x2 + y2) + g~;y) + a = ~2 r2 + /~~) + a, 

(AJ) = (0, 0, 0,A4,A4, 0, 0, 0), A4 *" O. 
(2.24) 

Hereg is arbitrary, x=rcosO, y=rsinO, f(O)=g(tanO)/ 
sin20. 

This completes the analysis of Case 2. However, 
Case 1, Eqs. (2.18), is much more difficult. We have 
not been able to discover a direct practical means of 
computing all solutions of (2. 8)- (2. 10) corresponding to 
this case. In the next section we develop an indirect 
group-theoretic procedure which not only enables us to 
solve these equations but also provides clear insight 
into the structure of second-order raising operators. 
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3. SEPARATION OF VARIABLES 

Let us note that raising and lowering operators occur 
in pairs: If!!:. is a raising operator for !!, 

(3.1) 

then, taking the formal adjoint, we have 

(3.2) 

so that R+ is a lowering operator (raising operator by 
- X). Inparticular, if!!:. takes the form (2.12), then 

8 8 

R+ = ~ AJQj + O's = ~ A1QI(- X) + as, 
- 1=1 - I=j-

where 

Aj=Ah 1 ~j ~ 5, 

As= -As, A7=Aj- A 7, A8=A2 -As, 

as = O's - X(Ajy +A~ - A, - As). 

(3.3) 

(3.4) 

Here .2/(- X) is obtained from.2" (2.13), by replacing 
X with - X. These results follow from (2.13) and the 
following facts: 

.25=P~+XyP2+A, .2s=-M, .2;=-P2, .2; =-Pp 

Moreover, it follows from (3.1) and (3.2) that ~,~] 
= 0, where ~ = [!!:., !!:.+], i. e., ~ is a symmetry of!!. We 
are concerned with the case where Rand R+ are both 
second-order differential operators-:- so thit we would 
expect that ~ was in general a third-order operator. 
However, we see from (2.12), (2.13), and (3.3) that the 
purely second-order terms in Rand R+ are identical. 
This means that S is at most asecond-order operator. 
Indeed for ~= 5 +{3, where 5 is a pure differential opera
tor and (3 is a multiplier function, a straightforward 
computation yields 

5 = pi(4AA~ + 2AAi +Ai - 2A1A 7 + 2AaAs) +P~(4AA~ +A~ 

- 2A08 - 2AaAs) + P jP2(2A jA 8 - 2AjA2 + 2A07 + 6AAaAs 

+ 2AAaA, - 4A~s + 4AsAs) + M2(4AAi + 4AA~) + (MPj 

+P1M)(- AAjAS +4AAjA 4 -A0s - 3AA03) + (MP2 

+P2 M)(-AjAS +2AAjA 3 - 4AA05 + AA04)' (3.6) 

At this point we can make use of the results of Ref. 1. 
There one studies differential operators 

!::. = APi + BPjP2 +c11 +DM2 +E(PjM + MPj) 

+F(P2M + MP2) +y(x, y) (3.7) 

such that ~,!::.] = 0, where!! is given by (1. 1). A princi
pal result of Ref 1 is essentially that if H commutes with 
a nontrivial L, then the Schrodinger equation H1/!= jJ.iJ; 
separates in one of four orthogonal coordinate-systems. 
More specifically the authors study the action of E(2) on 
the set of all operators L via the coordinate transforma
tions (2.11). They show that the E(2)-orbits are of five 
types. 

I. pi -11 +a(Pi +P~) + /3, 

II. PjM +MPj +a(Pi +11) + /3, 
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m. Ml+a(~+~)+{3, 

IV. M2 +W(~ -~) +a(Pi +P~) +/3, 

V. a (Pi +P~) + /3, a, l ER, l > O. 

(3.8) 

Every L lies on the same orbit as a constant multiple of 
exactly-one of the elements I-V. (The term pi + 11 oc
curs with an arbitrary constant because the Hamiltonian 
always commutes with itself. ) Thus by applying an ap
propriate E(2) transformation we can always assume 
that!::. is equal to one of these five forms. 

If !::. takes the form I, then, according to Ref. 1, 

V(x,y)=f(x)+g(y), (3.9) 

and the Schrooinger equation separates in rectangular 
coordinates. If!::. takes the form II, then 

(3. 10) 

and the Schrooinger equation separates in parabolic 
coordinates, while if !::. takes form ill, 

V =f(r) +g(e)/r2, X= r cose, y = r sine (3.11) 

and the equation separates in polar coordinates. If L 
takes form IV, then 

V- f(u)+g(P) l 
- cos2u _ cosh2p' x = coshp cosu, y = l sinhp sinG, 

(3.12) 
and the equation separates in elliptic coordinates. Final
ly, if L takes form V, then L is a multiple of H and 
there is no information about V. -

The above results apply immediately to our study of 
the operator S. First of all, by putting R in one of the 
forms (2.18); (2.19), we see from (3. 6)that if R is 
truly second-order, then S is truly second-order (never 
first-order). -

Note that the coefficient of lIfl in (3.6) is proportional 
to Ai +A~. If this coefficient is nonzero, then S lies on a 
type III or IV orbit, i. e., the Schrodinger equation 
separates in either po~r or elliptic coordinates. If Aj 
=A2 = 0, then ~ lies on a type I, II, or V orbit. 

We consider Case 2(Al=A2 =0) first. Then from (2.19) 
we can also require Aa = 0, A~ +A~ > O. Substituting into 
(3.6), we find 

(3.13) 

It follows that type II orbits never appear, only type I 
and V orbits are possible. Moreover, our analysis of 
(2. 20) has Shown that we can find a potential V only if 
As = O. Thus ~ corresponds to a type I orbit if Ai *A~ and 
to a type V orbit if A~ =A~. The method of Ref. 1 yields 
no information for type V orbits but our direct approach 
in Sec. 2 has yielded the solutions (2.24), separation in 
polar coordinates, and the special case A, = - As of 
(2.21), separation in rectangular coordinates. For A~ 
* A~ the results of Ref. 1 show that H lies on the same 
orbit as a Hamiltonian whose potential takes the form 
V = f(x) +g(y). This agrees with the results (2.21)
(2.23). 

So far we have merely verified previous results. How
ever, the method of Ref. 1 now allows us to find all 
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solutions of (2.8)- (2. 10) corresponding to Case 1. in
deed, if A~ +A~ > 0, we know that H lies on the same 
orbit as a Hamiltonian with potential of the form (3.11) 
or of the form (3. 12). Thus, we can find all Case 1 
solutions of (2.8)-(2.10) by requiring that V take either 
the form (3.11) or (3.12). That is, every solution V lies 
on the same orbit as a V which separates in either 
polar or elliptic coordinates. This fact is of great im
portance for it allows us to separate variables in (2.8)
(2.10) and reduce these coupled partial differential 
equations to uncoupled ordinary differential equations 
for jandg. 

At this point we have proved the following fact: If a 
Hamiltonian H admits a second-order raising operator 
then the SChr6dinger equation HI/J= JJ.I/J separates in either 
rectangular, polar or elliptic coordinates. Of course the 
converse is false. 

To find all cases when S is type III we substitute the 
polar coordinate expression (3.11) into (2.8)-(2.10) 
and find all solutions which correspond to type III orbits. 
A tedious computation yields the Single solution 

_ X2,-2 a sinO + b _ ~2 2 2 ay b 
V- 2 + rZcoszO +c- 2 (x +y)+ X9x2+y2 +~+c, 

(3. 14) 

(AJ) = (At> 0,0,0,0,0, tAt> 0), A1 *0. 

Every type III solution lies on the same orbit as (3.14). 

To find all cases when S is type IV we substitute the 
elliptic coordinate expression (3.12) into (2.8)-(2.10) 
and find all solutions which correspond to type IV orbits. 
We obtain 

V _ -!;\2(cosh2p + cos4a- - cosh4p - cos20') + b(1/cosh2p -1/cos20') 
coszO' - coshzp 

(3.15) 

x = coshp coSO' , y = sinhp siro , 

)..2 (cosh2p + cos40' - COSh4p - cos20') )..2 2 2 
V=-2 2 h2 +c=-2 (x +y )+c, cos 0' - cos P 

(3.16) 

(AJ) = (Aj,O,O,O,O,O,Ar,As), At>As*O. 

The determination of all solutions of Eqs. (2. 8)
(2.10) for elliptic coordinates is extremely tedious due 
to the complicated nature of the coefficients in the resul
tant coupled ordinary differential equations. Our method 
is to examine these equations in the vicinity of some 
convenient point which mayor may not be a singularity 
of the potential. [This Singularity cannot be essential 
since from (2.10) in elliptic coordinates one can see that 
if there is a singular point it is regular. ] For example, 
examination of (2.8)-(2.10) about the points siIlO' = ° 
yields six differential equations involving only g(p) 
which must be compatible. In this way one can proceed 
until all possibilities for the parameters A J and poten
tials V are exhausted. 

4. EXAMPLES 

In this section we explicitly solve the Schrodinger 
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equations corresponding to the above potentials and ex
amine the action of our second-order raising operators. 
Without loss of generality we can assume ~ > ° and set 
the additive constant c equal to zero for each potential. 
In each case we solve the equation !!.I/J= JJ.1/J correspond
ing to appropriate choices of the potential parameters. 

Consider first the potential (2.21), 

~2 (2 2 al !!2 
V(Xt> X2) = 8" Xl +X2) + xi + X~ . 

Bound states exist for a, > - i, and the normalized 
eigenfunctions are 

,., _~ 2(ll'I(~2/4)"''''\1/2 
1fJ:l~2(Xl' X2) - 2 J!l\{(k, ± v, + 15) exp(- Xx2j2) 

xx~12"''''L~'()''~/2), (4.1) 

v,=t(l +8a,)112, JJ. u = ~(kl +k2 +1) +t)..(±Vl± V2), 

k,=0,1,2, •.. 

For details on the degeneracies see Ref. 1. 

Here L~(x) is a generalized Laguerre polynomial. 3 

The raising operator in Xl takes the form 

!i. = - t(2/~ 0%1%1 - 2Xl0%1 + t~ - 4aJXx~ - 1) (4.2) 

with action 

!i.1/J~1~2 = .J(kl + 1)(k1 + VI + 1) 1/Jk1+1. ~2' 
(4.3) 

There is a similar operator in X2 which raises the k2 
index. 

The potential (2. 22), 

has bound states for a1 > - i, with eigenfunctions 

(~)1/4(~)<tW)/2( kd1 )1/2 
1/fkt~2(Xt>X2) = 1i"2 k2l2k2r(k1± v+ 1) 

(4.4) 

Details on the degeneracies can again be found in Ref. 1. 
This potential takes the form (1.7) with Xl =Xl =X, Xl' X2 
= y, a= ° so that it admits a first-order raising operator 
(1. 12) in X2' It also admits the second-order operator 
(4.2) with action (4.3). Similarly the potential (2.23) 
admits a second-order raising operator in x=Xt with 
the form (4. 2). 

The potential (2. 24) 
V=h2r +j(e)/r 

corresponds to eigenfunctions 

r e _(~)(s+t)/2l 2(nl) \ 1/2 
1/J".s( , )- 2 ,r(n+s+15J 
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where as is a solution of 

a; +[82_ 2/(8)]a.=0, 

n=O, 1,···. (4.5) 

and jJ. = X(n + is + i), s> - 1. The raising operator takes 
the form 

!i= - ~[orr+G - xr)Or- ~ + ).2t -).] 

with action 

!il/i",s = ~).[ (n + s + l)(n + 1)]1 /2l/in+l, s, 

R+l/in.s = ~).[(n + s)n]1/2l/in_l.s· (4.7) 

For the above potentials it was always possible to 
choose coordinates such that R could be expressed as a 
differential operator in a single variable. In the re
maining three cases this is no longer possible and the 
action of the raising operator is more complicated. 

The potential (3.14), 

v- ).2r + asin8+b 
- 2 r 2 cosz8 ' 

has, for example, in the case a= (a2 - f32)/4, b= - t 
+(a2+~)/4, a>i, f3>~, normalized eigenfunctions 

(r 8)-( ).(nl)(k!)r(a+f3+k+1)(a+f3+2k+1) \1/2 
l/i",,, , - r(n+~(a+f3)+k+!)r(a+k+1)r(f3+k+1)2111+8J 

x exp(- ).r2/2)(fir) (III+B) 12+"+1 /2 L!III+8+1+") 12 ().r) 

x(l +sin8)S12+1/4(1_ sin8) III 12+1 14p:o B(sin8) , 

n,k=0,1,2,···, (4.8) 

and energy eigenvalues jJ. = )'[2n + k + ~(a + f3) + 1]. Here, 
p:,s(x) is Jacobi polynomial. 3 The raising operator is 

sin8 1 • (COS8 ~ 11 = - r 088 + cos8 arB - "2sm8o r - 2r +).r cos8) 08 

(a 2 
- f32) (sin28 + 1) (a 2 + f32 1) sin8 ,\r. 8 

+ 4r cosz8 + -2- - '4 rcos28 +"2 sm 

(4.9) 

and its action takes the form 

(4.10) 

!.tl/i", " = Yn."-Il/i", "-1 + ~n~I,"+Il/in-l."+1 
where y, ~ are rather complicated real constants, non
zero in general. Thus, R no longer raises a single in-
dex n or k. -

The potential (3.15), 

V = i).2(x2 +y2) + b/x2, 

is of the form (1. 9) in y. Thus, it admits a first-order 
raising operator with action (1. 11), (1. 12). Further
more, this potential corresponds to a special case of 
(2.21) so that its eigenfunctions are given by (4.1) with 
at = b, a2 = 0, and it admits two second-order raising 
operators of the form (4.2). The potential is also a 
special case of (2.24) and (3. 14) so that it admits the 
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raising operators (4.6) and (4.9). However, the .. poten
tial admits the further raising operator 

!i = y(o: - ,\2X2 - 2b/x2 - ).) - x(o,,- M)(O" + ,\y), (4.11) 

which is not admitted by the earlier mentioned potentials 
in their generality. In Cartesian coordinates the Hamil
tonian has (unnormalized) eigenvectors 

~'''2(X,y) = exp(- >..r2/2)(x)*V+1/2L~(M2)H"2(fiy), 

v=(2b+t)1/4, b>-t, 

and eigenvalues 

jJ. = '\(2kl +k2 ± v+ 1), k1, k2 = 0,1, .... 

(4. 12) 

The action of!i is given by 

!il/4~'''2 = - >..1/2(2kl ± v+ i)l/i"I' "2+1 - 4>..1 /2(kl + 1)k2l/i"1+1. "2-1 , 

(4. 13) 

!i+l/4~'''2 = - 2>..1/2(kl ± v)l/i"I-I'''2+1 - 2,\1 /2k2(2k1 ± v+%)l/i"I.k2-1' 

The potential (3.16), isotropic harmonic oscillator, is 
a special case of all previous potentials except (2. 22) 
and it admits all of the raising operators allowed by 
these potentials. 

The raising operator Ql + as admitted by potentials 
(3.15) and (3.16) implies via our procedure that the cor
responding SchrOdinger equations separate in elliptic 
coordinates. Thus one might expect that the action of 
these raiSing operators would be simplest in elliptic 
coordinates. This is not the case. The elliptic co
ordinate solutions of the harmonic oscillator Hamilton
ian are Ince polynomials, 4 but the corresponding poly
nomial solutions for (3.15) in elliptic coordinates ap
pear not to have been studied in any detail. In any 
event, the action of the raising operator on an elliptic 
basis is not transparent. 

In conclusion, we remark that Refs. 5 and 6 contain 
results related to our work. 
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Generating functions of the 12j and 15j angular momentum recoupling coefficients are computed 
explicitly in the Bargmann formalism. Symmetry properties are deduced therefrom. A geometrical 
Mobius strip representation (originally due to Ord-Smith for the 12j case), which can be generalized 
to all n, suggests a 4n -fold symmetry for the 3nj coefficients (n ~ 4). 

I. INTRODUCTION 

The structure of the angular momentum 9j coef
ficientl

- 3 has been studied in the Bargmann approach. 4,5 

It is the purpose of this note to extend some of the con
siderations to higher 3nj coefficients. 

(A) The generating functions for the 12j and 15j co
efficients are explicitly computed in the Bargmann 
scheme. It is a tribute to the powerful Bargmann lem
mas on the Laplacian integrals4 that those seemingly 
complicated 6n-fold integrals can in fact be systemati
cally carried out. Thus in prinCiple the generating func
tions for the 3nj coefficients are computable for ar
bitrary n in the Bargmann approach. Alternatively, the 
generating functions can also be found in the algebraic 
recursive scheme of Schwinger. 3 For n = 4 and 5, they 
have been verified; the answers are essentially the same 
apart from a difference in an over-all phase factor. 6 

(B) Symmetry relations of the 3nj coefficients (n = 4, 5) 
are here deduced on the basiS of the explicit knowledge 
of their generating functions. They turn out to confirm 
the 4n-fold symmetry (n = 4, 5). For n = 4, this was 
first discussed by Ord-Smith7 using (i) a geometrical 
Mobius strip picture which incorporates the basic 3j 
triangular relations and (ii) an reduction formula (attri
buted to J. P. Elliott) of the 12j coefficient as a sum 
over products of four Racah coefficients. 

The Mobius strip picture can be properly generalized 
to all n. (There is a slight technical difference between 
even or odd n cases. ) Thus a basic 4n-fold symmetry is 
expected to hold for arbitrary n. The situation may be 
summarized as in Table I. Lower order coefficients (for 
various reasons such as looser structure) are seen to 
possess larger symmetry. We find it gratifying that for 
n ~ 4, the symmetry for the 3nj coefficients becomes 
more systematic. [Note, however, the remark (b) 
below]. 

(C) Explicit expreSSions for the 12j and 15j coeffi
cients can be extracted from their generating functions. 
However, in view of the excessively large numbers of 
summations involved [namely, (2","1 - 1- 3n)-fold], we 
shall not write them down here. The reduction formu
las6,lO of 3nj coefficients in terms of 3(n - 1)j coefficients 
on one hand, and in terms of the Racah coefficients on 
the other, are probably more useful in practice. 

The following remarks are made in view of the exten
sive work on the theory of angular momentum by A. P. 
Jucys et al. ,10 although the present undertaking is en
tirely independent of their approach. 

(a) Jucys et al. have adopted a graphical method of 

their own; they were able to do calculations with the aid 
of their graphical method. Our emphaSiS, however, is 
on the explicit calculation of the generating functions. 

(b) There is a proliferation in the definition of the 
3nj coefficients. As the number of j's goes up, there are 
obviously various different recoupling schemes. Thus 
Jucys et al. have defined several kinds of 3nj coeffi
cients. The ones we discussed here in this paper, the 
canonical ones, correspond to what they call the first 
kind. We shall not be concerned with those other than 
the first kind here. 

(c) We have independently rediscovered a set of re
cursion formulas for the 3nj coefficients (i~ in terms of 
3(n - 1)j coefficients and (ii) in terms of 6j coefficients. 6 

These are known to Jucys et al. The basiC 4n-fold sym
metry is also implicit in their work. However, we wish 
to emphasize that the methodology used are quite differ
ent, especially in regard to the symmetry. Our em
phasis in this paper is to carry out the explicit calcula
tion of the generating functions. From what we learn 
from the previously known cases, we adopt the viewpoint 
that all the symmetry of the 3nj coefficients is con
tained in the generating functions. The symmetry should 
be transparent and unambiguous in the Bargmann ap
proach. What we have found is that (i) from our study of 
the generating functions comes the basic 4n-fold sym
metry (n = 4, 5); (ii) the symmetry operations can be 
transcribed to those on a suitably defined Mobius strip; 
and (iii) this geometrical picture and the 4n fold sym
metry is obviously valid for arbitrary n ~ 4. 

II. THE 12j COEFFICIENT 

A. Defi n ition 
In analogy with the previously discussed n ~ 3 cases, 4,5 

we express the 12j coefficient (which is the recoupling 
coefficient involved in adding five angular momenta to a 
total j, or adding six angular momenta to zero) in terms 
of sums of products of eight 3j coefficients. We adopt 
the following labeling in Eq. (1) for the twelve j's, 
which is a slight modification of that of Ord-Smith7: 

TABLE I. 

3nj recoupling coefficients 

6j Racah 
9j 

12j 

Symmetry relations 

144 [Refs. 8,41 
72 [Refs. 2, 9, 51 
16 [Ref. 71 

(1) 

n=2 
n=3 
n=4 
n"'=4 3nj general 4n [this work and Ref. 101 

1490 Journal of Mathematical Physics, Vol. 15, No.9, September 1974 Copyright © 1974 American Institute of Physics 1490 



                                                                                                                                    

1491 C.-S. Huang and A.C.T. Wu: Structure of the 12i and 15i coefficients 1491 

FIG. l. MObius strip representation for the 12j coefficient. 

(2) 

where 

(3a) 

except 

(even-n rule), 
(3b) 

It is clear that there are triangle relations governing 
in each of the eight 3j coefficients. In the present 
notation, each 3j factor calls for a set of consecutive 
triplet indices (P-1q, pq, p+ 1q) or (pq-1, pq, pq 
+ 1), (P, q = 0, 1, ... , n - 1, mod n). It is convenient to 
label a set of vertices p, p' accordingly. This results in 
the Mobius strip representation7 (see Fig. 1). Note that 
the index convention is as follows: (i) jpo connects from 
vertices p to q; (ii) j gets primed if the first index is 
primed; the prime on the second index is suppressed 
[except for those for tpo' see Eq. (10)]; (iii) rules (3a) 
and (3b) are to be obeyed for even n cases [cf. Eq. (22) 
for odd n] 

,B. Generating function of the 12i coefficients 

The generating function is defined as follows: 

G(l2)(t t')= >; N-1 {12j} IT lp·t'k'p· (4) , f:tt 4 ~.Q Po Po' 

where the normalization factor is given by 

N4= [fr (J,,+ 1)!(J~+ 1)!/ (n k".! k;'}] 1/2. (5) ,,-0 \"'. '} 
For a triplet of indices (P-1,P, p+ 1), we define 

J p=jPP_1+j""+j""+1=6j,,., (6a) 

and 

k".=J,,- 2jp., 

k;'.=J;' - 2jp •• 

• 
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(6b) 

(6c) 

(6d) 

In a manner which is perfectly parallel to the known 
cases n "" 3, 4.5 the generating function can be converted 
into the following integral: 

G(121,(t, t')= J dj.J.24u;)eXpCta (Dp+np»), 
where 

Dp=tpx~p'1)p, p=0,1, ... ,3, 

Dp=t~x~;"l1~ 

(7) 

(8a) 

(8b) 

denote 3 x 3 determinants formed by components of the 
indicated 3-vectors. The components of tp are labeled 
by the triplets (t/>p'l' tpp , tpp+1); likewise for tp. For ~" 
and IIp' a distinction has to be made involving the index 
0, namely for 1 * 0, ~, 11, have components labeled by 
(1-1l, ll, II + 1); likewise for ~j and 7)'1' On the other 
hand, for p = 0, the components are 

~o = (~03' ~oo, 1J~1); 110 = (1103' 1100' - ~01)' (9) 

~~ = (~~3' ~~O' -1)01)' 71~ = (1J~3' r;~o' ~01)' 
This complication comes about because two of the 3j co
efficients in Eq. (1) (namely those involving the 0 and 0' 
vertices) appear in a mixed conjugate fashion. In (8b) 
and (9), we have 

(10) 

while tp.= tp.' are distinct from tqp' 

The 24-fold integration in (7) can be carried out in 
four steps. The calculation is straightforward with the 
aid of the Bargmann lemmas on the Laplacian integrals. 4 

A slight extension leads to the following formula which 
turns out to be quite useful6

: 

J dIl3(~)dj.J.3(1)exp(tx~'1)+t'x~. 7)+c·~+d·r;) 
=(l-t. n'l exp[(txc' d) (l_t.t,)-l]. (11) 

The final answer for the generating function (7) is 

G(l2)(t, 1;') = (1 - a1 - ~ - a3 - a4 - as)'2, 

where 

a1 = {0/32 + {1O[23 + {30{21 + {ol12' 

a2 = tOOtl1(t~2t~2t30 + t~3t~3t21) + t11 t~2t33t~1 t03 

+ t22t;3tOat12t~0 - tp• - t;,., 

a3 = - tOOt12 t32 - t11t23 '103 + t22 t30t10 + t3iolt2l1 

a4 = t~otlOt~/21 t~3t32t;0 + ~l t~l t2i;2t30t~3t01 

+ t~2t;2t30t'03t01t10t~2 + t;3t~3t01tlOtbt21t~3 

- tp.- t'p., 

as = £00(11(2/33 - {oot11t23132 -(114.2(03(30 

with 

+ {22[33 t01t10 -t33(00[12121 + t3atol1i21 

- tOJlOt2i32' 

C. Consistency check 

(12) 

( 13) 

(14) 

Setting one of the appropriate angular momentum to 
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be zero should reduce the 12j coefficient to a 9j coef
ficient, and this implies that G<l2) should reduce to G( 9), 

which is known. S Our expression (12) satisfies this test. 
[To be precise, there are some sign difference among 
some of the corresponding terms and this is attributed 
to a difference in the choice of phase in going from 3nj 
to 3(n - 1)j coefficients. ] 

D. Symmetry (even n case) 

(a) Define the operation Pit) which carries tp• - t~. 
and the operation p:k) which carries k,. - k~. 

(15) 

It is easily verified that the generating function G<l2) 

(t,t') is invariant under P:". From Eq. (4), it follows 
that the 12j coefficient is invariant under P{k) which 
carries j,. - j~ •• 

(b) Define the operation p~t) = permutation (n~:) 
among the tp • indices. Likewise p~k) among the 
the k p• indices. (16) 

G(l2)(t, f!) is readily seen to be invariant under p~t). 
This implies that the 12j coefficient is invariant under 
p~k). 

(c) Define the operation p~t) that carries 

fp. - fp_1 .-1' 

fp• - t;'_1 .-1 

except 

flO - - to .-1' q* 1, 

fll - too, 

tl. - f~ .-1' 
and P~k) that carries 

except 

(17a) 

(17a) 

(17b) 

Then G(l2)(t, f) is invariant under p~t). The 12j coef
ficient is left unchanged apart from a phase: 

(18) 

In terms of the Mobius strip picture, the above three 
operations correspond to the following: 

Pi t): up-down symmetry of the Mobius strip: 
two fold symmetry, 

p~): left-right symmetry of the Mobius strip: 
two fold symmetry, 

P~t ): moving the "twist" between 
p and p + 1 vertices: n-fold symmetry 

Thus the combined symmetry is 4n-fold (n ;;. 4). (19) 

The fact that the 6j and 9j coefficients in fact posses 
larger symmetry than the basic 4n-fold symmetry dis
cussed here might be attributed to the looser structure 
of their corresponding Mobius networks. (We emphasize 
the lines rather than the surface. ) For n ." 3 (i. e., with 
at most three vertical lines), it is possible to inter
change the roles of horizontal and vertical lines, there-
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by resulting in enlarged symmetry. We claim that this 
is no longer possible for a Mobius network with four 
(or more) vertical lines. 

III. THE l5i COEFFICIENT 

A. Definition 

Parallel to the discussion of the 12j case, we take 

{15j} 

j12 f23 ~j~ ,~, 
'" j40 joo j01 jll 

j22 j33 jM \ J44 (20) 
j~ j23 j~4 

where 

i,.=jqp, m;'.=m.p 

(odd-n rule), p=O, 1, ... ,4. 

The remarks following Eq. (3) for the 12j coefficient 
apply here also with Eq. (22) replacing Eq. (3). The 
Mobius strip picture for the 15j is shown in Fig. 2. 

B. Generating function of the l5i coefficient 

(22) 

As an obvious generalization from .Eq. (4), we have 

(23) 

where 

Ns;a [IT (Jp + 1)1 (Jp + 1)1 I( n k pq! k~.!)~1/2 
,=0 P.q ~ 

(24) 

with the k,k', J, J' defined as in Eq. (6) now for p, q 
=0,1, ... ,4. As before, Eq. (23) is converted into the 
following integral: 

G<lS)(t, f) 

= f dlllS(~)dlllS(l1) exp(ta (Dp+n;»), (25) 

where Dp and nj, are defined as in (8) now for p 

0' 

FIG. 2. Ml:lbius strip representation for the 1~ coefficient. 
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= 0,1, ... ,4, tp having components (tp_IP ' t pp , tp+IP ) 
(mod 5), labeled by a set of triplet indices. Likewise 
for ~" and TI". All this is quite parallel to the 12j case 
except that the even-n complication (9) is absent here. 
Furthermore, ~~q' TI~. satisfy Eq. (10). 

After performing the 30-fold integration in (25), the 
final answer reads: 

(26) 

where bj consists of polynomials of degree 2(i + 1) in t 
and t', namely 

[tpq defined in (14)], 

4 

b2 = 6 [t"iP+II>+2 t"-1 N + (t~"tl>+1 p.I 
p=o 

X t~+2 1>+2tl>+3 P+3t~_1 ptp_I "_2 + t - t' )], 

4 

= 6 {(i"iN".I - tl>P+ltl>+I ,,)tI>+2I>+i"_1 ,,-2 
p=o 

+ [t~P(tI>+II>+Itl>+2i>+It;+2I>+S 

+ tp•2 P.2 tp'II>+2t'I>+I p) tp+s 1>+2 t;_2 P_I 

x tp_1"_2t;_I" + t- t']}, 
4 A A A A A 

b4 = 6 t"P(tP.1 P+l tI>+H+2 - tI>+1I>+2t '+21>+1) 
p-o 

X t/>-2 />-ltp-U -2 - n [I"p + (t, 11+1t1>+1" + t - t' )]. 
1>=0 

C. Consistency check 

(27) 

The statement made under Sec. nc for the 12j case 
is valid also for the 15j case. 

D. Symmetry (odd-n case) 

(a) Define the operation p~f) which carries tp.- f,q; 
correspondingly for p:k': k". - k'p •• It is obvious 
that G(lS'(t, t') is invariant under (28). This 
implies that the 15j coefficient is invariant under 
PIR. 

(28) 

(b) Define the operation p:,." = permutation (~~: w 
on t p• (recall t;.= tpt/). Correspondingly for p!}' 
on kpq• We have G<l5'(t, t 1 invariant under P~ " 
thus the 15j coefficient is invariant under p<..k'. 

(29) 
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(c) Define p~t': 

t,. - t;_1 .-1' t'pq - t"_1 .-1 (mod 5) (30) 

(31) 

Since GOS'(t, t') is invariant under (30), we have the in
variance of {15j} under (31). The remark following Eq. 
(18) holds here for n= 5. 

IV. CONCLUDING REMARKS 

What we have done is to demonstrate by explicit calcu
lations that the study of the properties of higher-order 
3nj angular momentum recoupling coefficients can be 
carried out in principle for all n. The algebraic com
plexities, though increasing rapidly with n, turn out still 
to be controlable. Extraction of the explicit expansion 
forms for the 3nj coefficients are in principle possible 
from the generating functions. 

The 3nj coefficients (n .. 4) are seen to possess a 4n
fold symmetry. Visualization of some of the structural 
properties of 3nj coefficients are greatly enhanced with 
the aid of a geometric Mobius network representation. 

Note added in proof: For graphical method for angular 
momentum, see also E. El Baz and B. Castel, Graphi
cal Methods of Spin Algebras (Dekker, New York, 
1972). 
*Based in part on a dissertation submitted by C. S. Huang in 
partial fulfillment of the requirements for the Ph. D. degree 
at the University of Michigan, 1973 (unpublished). 
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see L.C. Biedenharn and H. Van Dam, Eds., Quantum Theory 
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By adjoining a set of adequate potentials to the classical electromagnetic potential, it is possible to 
. formulate a variational principle that yields the equations of the micromorphic EM theory proposed 
by Eringen and Kafadar [I. Math. Phys. 11, 1984 (1970)]. The energy-momentum law for 
micromorphic EM fields is obtained and constitutive equations are derived for relativistic 
EM-elastic fields. 

I. INTRODUCTION 

Recently Eringen and Kafadarl proposed a set of basic 
laws for relativistic microelectromagnetism and, as a 
particular case, introduced the field equations of the 
microelectromagnetic theory of grade I. This theory 
was intended for the prediction of physical phenomena 
involving ferromagnetism, micromagnetism (in the 
sense of Brown2); electrets,3 microwave propagations, 
and other related microelectromechanical effects for 
which the classical continuum hypothesis is violated. 
This situation arises when the length scale associated 
with the exciting agents become comparable to the 
average dimension of "grains" (microelements) in bodies 
and/or the average distance between grains. Then it is 
believed that the classical field theories do not contain 
the necessary mechanism to take into account the local 
degrees of freedom. The theory of microelectromagne
tism is so constructed as to provide the necessary de
scription, still within the frame of continuum formalism 
(1. e., with "nice" differential equations), the new de
grees of freedom being accounted for by new field 
equations referred to as "moment" equations. In fact, 
Eringen4 has shown that: (i) The basic balance laws of 
phenomenological micromagnetism such as given by, 
among others, Brown,2 Tiersten,5 and Maugin and 
Eringen, 6 could be derived from microelectromagnetism 
theory by assuming certain approximations (quasimagne
tostatics in a rigid body); (ii) in different approxima
tions, the theory contains London'S phenomenological 
equations of superconductivity (there, the new degree 
of freedom is represented via a local "superconduc
tivity" field JC). 

By analogy with the mechanical theory developed ear
lier by Eringen and his co-workers, 7,S this theory may 
preferably be referred to as micromorphic EM theory. 
Indeed Eringen and Kafadar constructed their theory in 
the frame of the four-dimensional formalism of 
Minkowskian space-time, and introduced averages of 
Maxwell's equations in matter over well-defined volumes 
or hypersurfaces in a manner very similar to that used 
for constructing the mechanical theory of micromorphic 
media. 7,8 Though in the latter the concepts of new kinds 
of forces and couples and of energy arose quite naturally 
since it was a mechanical theory, the equivalent result 
for the energy equation in the micromorphic EM theory 
was not obtained. As a result of this and the lack of 
thermodynamical conSiderations, the theory lacked con
stitutive equations. This fact is not due to indifference 

or oversimplification; rather, these authors postponed 
the solution of a problem which involves difficulties in
herent to all theories dealing with electromagnetism in 
matter such as the difficult problem of defining the pon
deromotive force and couple, and the energy denSity 
and/or the electromagnetic stress-energy-momentum 
tensor. This, of course, requires in general the con
sideration of interactions of the electromagnetic fields 
with a deformable medium. The construction of a com
plete micromorphic EM theory with mechanical interac
tions based on the statement of global or local balance 
laws (direct approach) necessitates the introduction of 
a model for the above -cited interactions. This difficulty 
may be bypassed if, instead of this general approach, 
one is satisfied with the study of nondissipative phenom
ena and thus, considers a variational formulation. Such 
a formulation is in general possible and yields results 
in complete agreement with those obtained from a direct 
approach. For instance, the direct approach of Eringen 
and Suhube and the variational one of Maugin9 lead to 
comparable results for the theory of nondissipative 
micromorphic media. The same holds true for the 
treatments of the classical continuum theory for the 
interactions of EM fields with deformable bodies pro
vided by Grot and EringenlO on the one hand and by 
GrotH on the other. We must, however, note that the 
identification of the results was possible in the two 
different approaches because some expressions result
ing from the direct approach were known. For the same 
reason, it has been possible to grant a physical signifi
cance to quantities resulting from the variational formu
lation. The Situation is somewhat more annoying for the 
micromorphic EM theory, for no direct approach is 
known so far that includes mechanical interactions. It 
is therefore along this blind alley that we try to con
struct a simple theory for the interactions of micro
morphic electromagnetic fields with deformable bodies, 
by USing a variational principle as starting point and 
invariance principles as the main tools. 

In all rationality, the deformable body considered 
should be micromorphic of grade I in the mechanical 
senses too. This would, however, result in cumbersome 
algebra. Thus, for the sake of simplicity, we shall 
assume that the material in question has a very simple 
mechanical behavior, namely that it is hyperelastic, 
1. e., nonlinear elastic with constitutive equations deriv
able from a potential, the relativistic strain-energy 
function. 
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In this paper we deduce from the variational principle 
(i) the field equations of micromorphic EM theory of 
grade I, (ii) the equations of conservation of energy
momentum and of moment of energy-momentum-this 
follows from the application of Noether's theorem-(iii) 
constitutive equations for all constitutive variables. At 
some point, we shall emphasize the analogies with the 
mechanical micromorphic theory. 
I 

ill. BACKGROUND 

The background of the subsequent developments is the 
space-time continuum of Minkowski, M\ equipped with 
the Lorentz metric of Signature (+, +, +, -). The Greek 
subscripts and superscripts assume the values 1, 2, 3, 
4. Small and capital Latin indices assume the values 
1, 2, and 3. x" and xK, K=l, 2, 3, denote, respective
ly, a curvilinear system of coordinates in M4 and the 
Lagrangian coordinates of the reference state in Eucli
dean space E3. In an inertial frame, the square of the 
element of arc in M4 is given by 

ds 2=dzadza , (Z1,Z2,Z3,Z4)=(X,y,z,ict), i=(_1)1/2, 

(2.1) 

where z" are rectangular coordinates, t is the time, 
and c is the velocity of light in vacuum. Referred to 
curvilinear coordinates x", we have 

ds2=g"adxadx8, (2.2) 

where gaB is the metric tensor which is normal 
hyperbolic. 

Partial and covariant differentiation with respect to 
x'" are denoted, respectively, by commas and semi
colons or symbols 'i7 a' Indices are raised and lowered 
by the metric tensor gas and its reciprocal gaB. The 
summation convention is used throughout the paper. 
Parentheses around a set of indices denote symmetriza
tion and brackets denote alternation. EaSrO is the permu
tation symbol. 

We refer the reader to Grot and Eringen,10 Kafadar 
and Eringen, 12 and Maugin and Eringen13 for a complete 
description of kinematics of relativistic continua. The 
elements of kinematics sufficient for the present expose 
are the following ones: With T the proper time of the 
particle (X K) initially at the coordinates X K in E 3 , the 
motion of (XK) along its worldline (~XK) in M4 is entirely 
described by the set of relations of class C2 

xa =x"(XK, T). 

Conversely, we have 

XK=XK(Xa ), T = T(xa). 

From (2.3) we compute 

with 

ax'" ua =_ aT 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

and define the operator of projection pas, onto the hyper
plane M~ orthogonal to ('ifxK) at x a , by the relation 

(2.7) 
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with 

P"'spsr=P"" pasuB=O. 

Finally the direct and inverse deformation gradients of 
the motion are given by the definitions 

'" pa S X K aXK 
x K = B X ,K' ,a = ax" • (2.8) 

A material body (B) eE3 [(B R ) in the reference config
uration] of boundary (aB) sweeps out the tube (ar) eM 4 

as time goes on. (aar), (&1) = (ar) - (aar), (~), (M 4 
- ;~1) 

denote, respectively, the boundary of (a't), the open set 
that corresponds to (a't), the closure of (a't), and the 
complement of ($) in M4. A discontinuity three-dimen
sional hyper surface (r) of unit oriented normal na may 
split (a't) into two parts. The familiar symbolism [ ... ] 
denotes the jump across (r) or, sometimes, across 
(aa't). The outward unit normal of (alB) is denote" by 
N",. 

Here we briefly recall the salient results of Kafadar 
and Eringen. 1 The field equations for the micromorphic 
EM theory of grade I read 

G"'B;B=(l/c)J'" in (.4/- r), [G",Il]ns=(l/c)Ka on (r), 

(2.9) 

[G"'B~]nB=(l/c)K"'~ on (r), 

with the definitions 

G"'B = electric displacement tensor, 

(2.10) 

GaB~=first moment of the electric displacement 
tensor, 

J'" =volume current 4-vector, 
J"'~=first moment of the volume current, 
<;f",A=average local electric displacement, 
K'" = surface current 4 -vector, 

K",A=first moment of the surface current. 

The first set of Maxwell's equations (2.9) is thus 
supplemented by the new "moment" equations (2.10). If 
the symbol ( ... ) (n) indicates the average over a mani
fold of dimension n, then the moments G"'BA and J"'A and 
the field <;f'" A are defined as1 

G"'BA= (G",ae>(2j, J"'As (J"'~A>(3)' <;f"'A s (G"'~>(3) 

where e is the 4-vector that joins the "center" of the 
manifold element to any point of this manifold element. 

The second set of micromorphic field equations is 

F"'~a=O, ~"'s;s=O, 

F"'s~s +F"'A _&"'A=O, 

where we have used the definition 

:F = dual(F), 

Thus, in the index notation (2. 11) is equivalent to 

E",aro Fro ;B= 0, E"'BYO ff rO;a =0, 

E"'Br6(F _ct: ) + E'" AroF B -0 
1'0 v 1'0 yO ; A - , 

in which 

(2.11) 
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F", s == magnetic flux density tensor, 
5' "'s == average local magnetic flux density tensor, 
F" t == first moment of the magnetic flux density 

tensor, 

with 

5'",s==(F",i) (3)' F"t=(F"A~S)(2)' 

Here again (2.11)2 3 are the micromorphic supplements 
of the Maxwell's equations (2.11)1-

Equations (2.9)10 (2.10)10 and (2.11) are supplemented 
by the conservation of charge laws 

One can show that the following equations hold: 

a["A];A =(l/c)(J"- J["A];A)' 

~("A)= -(l/c)J("Al, 5"~" = (1/c).9'\ 

of which the latter provides a definition for d A
• 

(2.12) 

(2.13) 

The structure of Eqs. (2.11) shows that we can in
troduce three sets of potentials to satisfy these equations 
identically. This is achieved by setting14 

(2.14) 

F"t= 2"Y I"AJ + 201,,(AA] - ~A])' 

where AA and ~A are two 4-potentials of which the 
former is the potential of classical EM theory, and A / 
is a second-order tensor potential. In a Euclidean frame 
of reference (inertial frame at which the 3-velocity v 
= 0), these potentials assume the decompositions 

A,,=(Ak,i¢), ~A=(~k,il/J), 
(2.15) 

We note from the relations (2. 14) that the potential 
introduced are not entirely independent. As a conse
quence' we certainly need not introduce all these poten
tials in a variational formulation; in fact, hereafter we 
shall use a set of potentials different from those intro
duced above and all independent. 

III. THE VARIATIONAL PRINCIPLE 

A. The Lagrangian density 

With the open (..i) of M4 and (M 4 -~), 
the following actions 

we associate 

1/ = - ( 0 p'Ifd4v + f 0 tF",sFs"'d4v, 
J (<i1) (<i1 ) 

Thus, in general, the Lagrangian denSity is 

,c=-p'If+tF"sFS
"', 

(3.1) 

(3.2) 

where p is the invariant relativistic density of matter, 
'If is called the relativistic specific internal energy, and 
tF",sF8" represents the density of the free magnetic 
field. In the absence of matter, 'If vanishes. Therefore 
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'If represents the interactions of matter with matter and 
matter with electromagnetic fields. The crucial point 
here is the selection of the arguments on which 'If de
pends. By analogy with the mechanical micromorphic 
theory9 and the theory of couple-stresses, 15 and follow
ing the guide provided by Mie's theory of electrodynam
iCS16.17 (that we generalize in a certain sense), we pos
tulate that 'If depends on the set of basic arguments con
stituted by the motion x"', the electromagnetic potential 
A"" and a supplementary set of four 4-potentials A«(~ , 
(~)=1, 2, 3, 4. Here, the number (~) has no tensorial 
character. 18 For a theory of hyperelastic media and for 
micromorphism of first order, 'If will also depend on an 
adequate set of arguments derived from the basic argu
ments, namely their first gradients. For'instance, we 
may choose the following functional dependence: 

(3.3) 

However, to restrict this form, we use three prinCiples 
commonly accepted nowadays: (i) 'If must be Lorentz 
invariant; (ii) the quantities which describe the deforma
tionfield must reduce to their classical analogues in a 
rest frame; (iii) we require 'If to be gauge invariant, for 
we are dealing with electromagnetism. The last require
ment overcomes the difficulty appearing in Mie's 
theory. 17 The requirement (ii) indicates that we must 
consider X"K instead of x'" K' The requirement (iii) which 
is satisfied if 'If is invariant under the following group 
of gauge transformations (eI>: arbitrary scalar function), 

tJ.,,,, - <N" + "Y",eI>, for every 4-potential GLt., 

rules out the explicit dependence on A", and A (~) . 
Furthermore 'If can depend on A"';8 and A (t~;8 only 
through the combinations A [" ;8] and A (~~ ;8]' We shall set 

(3.4) 

It follows that the two following equations are identically 
satisfied: 

(3.5) 

With the requirement (i), the invariance of 'If under 
space-time translations rules out the explicit depen
dence on x"'. Finally, as it has been shown that using X"'K 

or X K '" was equivalent, 10 we consider a relativistic 
inteni.al energy of the form 

'If='If(XK.",F"'8,5'(~)8)' (3.6) 

In absence of electromagnetic micromorphism, 1. e., 
for A (~) =0, for every (~), we recognize the function 
used by Grotll and Maugin19 in special and general 
relativity. 

It r,emains to study the invariance of (3.6) under the 
rotation members of the Lorentz group. An infiniteSimal 
Lorentz transformation in M4 is described by the 
mapping 

(3.7) 

where E, d"', and Q,,8 are, respectively, an infinitesi
mally small constant, an infinitesimal constant 4 -vector, 
and a second-order Skew-symmetric constant tensor. 

For d'" =0, we get from Eq. (3.7) 

(3.8) 
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where Ii indicates the variation resulting from such a 
transformation. Here (3.8)2 gives the infinitesimal 
variation of a second order skew-symmetric tensor M",a 
under infinitesimal 4-rotations in M4. The invariance 
of W' is thus written 

W'(X~", F",a, S'(~~) = ~(XK,,, + f5X~""F"'B + f5F "B' S'(~~ + f5S'(~)B)' 
(3,9) 

Using the relations (3. 7) in the right-hand-side of Eq. 
(3.9) and noting that the left-hand side does not depend 
on Q"B, we have 

o~ 
ilQ"B =0, 

i. e. , 

B. The variational principle 

According to the general scheme for a variational 
principle in continuum physics20 and following the tradi
tion established by Lagrange and Piola, we introduce 
indeterminate multipliers for each term that can arise 
in varying the basic arguments in W' (i. e., x", A", A (~» 
in (iI), on (0$) and on (r). We therefore express the 
proposed variational principle as 

where 

f5W= (0 pf"f5x"d4v + ( T"'f5x",d3s + ( • 
J~ -:r) J (a&-r) J (8II-r) 

x ( 1 Ie ).r 6A "d4v 

-J (1/c)K"'6A",d 3s r -J. (lIe) 
(r) (rJ 

x( 6K(0"5Aw,,)d3sr 
(0 

~ (
'" (~),,~ ) 4 + (J.. ) L..J.!1 f5A(0" d v. .::o>-r (0 

(3.11) 

(3.12) 

Here we have considered a discontinuity hyper surface 
(r) in (.'B). The physical significance granted to the 
multipliers is the following: 

f" = applied specific body-force 4-vector, 
T" = applied surface-traction 4-vector, 
J" = volume 4-current, 
K" = surface 4-current prescribed on (r), 

.!1W" = volume 4-microcurrent relative to the field 
S'(~~, 

K<O" = surface 4-microcurrent relative to the field 
S'(~)B' 

f" and T" are not due to electromagnetic causes, e. g. , 
f'" and T'" may stand for gravity and a mechanical stress 
vector due to pressure respectively. For the process to 
be nondissipative, J" must be due to convection currents 
only. That is, in a rest frame, the Joule term J. E is 
zero (for example, this is the case when the conduction 
current is a homogeneous function of degree one in E). 
A Similar condition must hold for .!1w"'; however, we 
must admit that the physical significance of such a re
quirement is not clear. The notation <5 used in Eq. 
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(3.12) is explained below. 

C. The variation 

We assume that the variation (3.11) is to be carried 
out under the constraints (3.5) which can be written in 
integral form using the language of exterior calculus21 

as 

J82/"'B dx" Adx
B 
= j(a 82)A "dx'" , 

j.sa)S'(~~BdX"'A dxB= S(a82)A (~) dx", 

(3.13) 

for all A(O, (~) fixed, where (82
) is an arbitrary two

dimensional hyper surface whose boundary is (08 2
). d 

indicates the one-form basis. Equations (3.13) express 
that F",a and S'(~)B are closed forms. FollOwing Weiss22 

and Grot,l1 it is not difficult to show that Eqs. (3.13) 
yield the following variations of the fieldS: 

f5F Q1B = 2( 5A [B);Q1 1-2FY[B( f5xY);Q1 I' 

f5S' (~)B= 2(6A (m;", 1- 2S'(;!a( f5xY);", I' 
(3.14) 

where the Weiss-gauge-invariant variation22 <5A" (simi
larly for aA (~» has been defined by 

The variation (3. 11) is thus carried out by varying x" 
and F"B and S'(~)B' the latters being according to Eqs. 
(3.14). Finally, in order to preserve the identity of a 
material particle (XK) , the following obvious constraint 
is imposed: 

f5XK = 0 in (.'B). 

The fields A" and AH~ are assumed to be of class C1 

throughout ($). The following necessary intermediate 
variations have been computed elsewhere ll ,13: 

f5X~" = -XK,B(f5XB);Q1, 

f5p = - pP"'a(f5xB);", (3.15) 

f5(d4V) = f5~( f5xB);Q1' 

Furthermore, we define the following quantities: 

tBa=_p~XK,,, 
- OXK,B ' 

(3.16) 

T~ .• ) = _F"'yFYB +tF ","F"" g"B (3.17) 

(3.18) 

(3.19) 

(3.20) 

They represent, respectively, the relativistic stress 
tensor, the electromagnetic stress-energy-momentum 
tensor in vacuum, the electric displacement tensor, the 
microelectric displacement tensor, and the total 
stress-energy-momentum tensor of the material 



                                                                                                                                    

1498 G.A. Maugin and A.C. Eringen: Variational formulation 

medium in (iii). 

By using (3.14)-(3.16), the variation oA + oli can be 
expressed as 

6A+oA= ~~){T,"Il(OX");B+Gae(5A");B 

+ LJ c.\ Q!1!(5A (!»;t}d4v 
(0 (0 

+ J (M40~){T(~~.v)(6XOI);1l + FOIB(aAQ!);B}~V. 
(3.21) 

Integrating (3.21) by parts and using the generalized 
Stokes' theorem23 [in order to take account of the pres
ence of (r)], we obtain the following expression for the 
variational principle (3.11): 

~ti or) {< - T"'B;B + pfC/)OxOl - (G"'B;1l - ~ J"') MOl 

"" a8 1 § Ot) 6A (0 ~ - frl\(0 :8 -;; (0 a V 

+ f (,114 oji)< - T!!! .• );8 OX" - FQ!I!;8 6Aa) ~V 

- J(a.'i'lor){([TOtlll Ne - T"') OX", + [G"'B]Ne 5AOt 

+.6 <£S~NB6A (!ld3s 
i() } 

+ ( }rTOIB]n Ox + ([GaB]n -!.. K OI) 8A J (r~ /! Ot B C Ot 

+.6 ([C[ «(~B ]n8 - !.. K(!'~\ M (~~}d3sr = O. 
(0 e) 

(3.22) 

D. Field equations 

,. Electromagnetic field equations 

We posit Eq. (3. 22) to be valid for any variations 5A", 
and .sA (!) and for any region in (dJ) and any hyper surface 
(ail) and (r). Thus we have 

and 

GOt/!; a :::: (l/e)J" in (ti - r), 
[G",Il]Ne=Oon(oiiW-r), 

F"B;a=O in (M" -$), 

[GOtBlne:= (1/ e)K'" on (r), 

<£(r)B :e=(l/e)a;l) in UfI- r}, 
[<£(fflNIJ =0 on (oiiW- r), 
[<£(rf]n(3 =: (l/c)K(f) on (r), 

(3.23) 

(3.24) 

for every (~) == 1, 2, 3, 4. Equations (3.23) are the usual 
Maxwell's equations in matter and vacuum. It remains 
to show that we can deduce from Eqs. (3.24) the 
"moment" equations which supplement Eqs. (3.23) in 
micromorphic EM theory. This is dealt with in Sec. 4. 

2. Dynamical field equations 

We now apply Noether's theorem for the group of 
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infinitesimal Lorentz transformations (3.7) by selecting 
the special variations 

OxO:==dOl and OXOI==EQaBx/l' (3.25) 

For any region in (iiW) and any hypersurface (~) and (r), 
(3.25)1 yields the field equations which express the con
servation of momentum and energy 

TOtB:{l = p f'" in (:B - r), 

Tf!..v) ;/!=O in (M4 _$), 

[TOIIl]Ns = TOI on (oiil- r), 
[TOIS]ns =0 on (r). 

(3.26) 

Considering (3.25)2 for any skew-symmetric Q"'s, 
constant throughout (iiW), and taking account of (3.26)1' 
we obtain24 

(3.27) 

By construction, this is also true in (M4 -$), cf. Eq. 
(3.17). Upon using Eqs. (3.16) through (3.20), it is 
shown that Eq. (3.27) is nothing but Eq.25 (3.10) (p ;to). 

We must adjoin Eq. (3.5) and appropriate equations 
for the conservation of charge. Equations, (3.26)
(3.27) are supplemented with the well-known continuity 
equations 

(puOt) ;'" = 0 in (riI- r), 
[pua ] no: =0 on (r). (3.28) 

We have thus obtained the full set of field equations 
that govern the behavior of nondissipative elastic 
materials which are mieromorphie oj grade I jrom the 
electromagnetic point oj view. 

IV. THEORY OF ERINGEN AND KAFADAR 

In this section we transform the sets of equations 
(3.24) and (3. 5) in order to arrive at the formulation 
given by Eringen and Kafadar (Ref. 1, Sec. 5). For 
instance, consider Eq. (3.24), multiply each member by 
A my and sum over (~). After integration by parts and 
addition of the vanishing quantity GOtY - G"'Y to the left
hand side, we obtain 

G",SY;e + G"" - 5""= (l/c)J"''', 

in which we have set 

G"'IlY""LJ~(~rAW., G",Il'=_G/la ., 
( ~) 

JOl'=LJ a(~)A(n" 
q) 

WaY"" G"" + 6 <£( ff A (t~~. 
w 

The skew-symmetric and symmetric parts of Eq. 
(4. 1) are then written 

G la 1~s"J +G"" _ ~("'rJ = (1/c)J10IrJ, 

~(Ot,) =: _ (l/c)J("'Y). 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Taking the divergence of Eq. (4.5)1 with respect to 
x' yields on account of Eq. (3.23)1 

'if(Ot~~= l/c(J'" _JIOIf;Jy), 

which is Eq. (2.13)1' 

(4.6) 



                                                                                                                                    

1499 G.A. Maugin and A.C. Eringen: Variational formulation 

If we assume that each microcurrent 4-vector satis
fies the usual law of conservation of charge, 

9'.w~",=0, W=1,2,3,4, (4.7) 

and multiply this equation by A(~) and sum over (~), we 
obtain 

J"'Y;", +JY -$'1'=0, 

where 

tTY =.JY + '" IY(!)OI A 'I' 
~ ft> U) ;01' 

With Eqs. (4.1) and (4.8), this gives 

~Y"';Y= - (l/e)$"'. 

(4.8) 

(4.9) 

(4.10) 

A transformation similar to that performed on Eq. 
(3.24)1 can be achieved for Eq. (3.5)2' leading to 

F"'S\S + FaA _~OIA=O, 
where we have defined 

FOISA=6~ "BA(m 
-U) (0 , 

From (4.11) it follows that 

(4.11) 

(4. 12) 

~Aa;A=O' (4.13) 

Finally, since the A(~) are assumed to be of class C1 

throughout (,sw), Eqs. (3.24)2_3 can be written in the 
forms 

[GOISA]NB=O on (o,sw- r), 

[G OI BA]ns =(l/e)KOIA on (r), 

with the definition 

KOl A ='6 K(f)AUlA. 
U) 

(4. 14) 

(4. 15) 

All equations obtained in the present section are in 
agreement with those of Eringen and Kafadar. More
over, constitutive equations have been given for all 
fields deduced from the variational formulation. We 
remark that, in absence of electromagnetic micromor
phism, i. e., for A(~ =. 0, (~) = 1, 2, 3, 4, everywhere in 
(,sw), the tensor fields ~aB, $01, and r B reduce to the 
classical Maxwellian fields GaB, J a , and F"'s while the 
"moment" fields GOISA, J"'Y, and F"'BA vanish identically, 
thus yielding the theory given by Grot. 11 

V. SPECIAL CASE 

As pointed out in Footnote 18, we may consider that 
only one new 4-potential is needed to describe the 
micromorphism of the electromagnetic field. Let this be 
aCt' And further we take it to be of constant unit ampli
tude, i. e., g>s aa as = 1 throughout (,sw). This means 
that we are interested only in the variations of direction 
of the 4-vector a",. By analogy with the mechanical 
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theories of micropolar media where the t.ensor fields 
describing the micromotion are of constant magnitude, 26 
we can say that we are now dealing with the micropolar 
theory of electromagnetism. All sums disappear in the 
definitions of the "moment" fields and the total stress
energy-momentum tensor defined by (3.20) may be 
written as 

TaS= (1/e2)pwu"'uS _ f!3a - F OIY G/ - F"'YA G/A 

+ tFuv FvU g>s, (5.1) 

thus yielding an explicit form of the momentum and 
energy densities of the micropolar electromagnetic 
fields. 
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Lattice Green's function of the body-centered cubic lattice 
at arbitrary points 
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Lattice Green's function for the body-centered cubic lattice at arbitrary points outside and inside the 
band is evaluated by the method of analytic continuation using Mellin-Barnes type integral. 

1. INTRODUCTION 

Recently a method of the analytic continuation using 
Mellin-Barnes type integral was developed in the calcu
lation of the lattice Green's functions. Body-centered 
cubic lattice1 and simple cubic lattice2 at the origin, 
square, and rectangular lattices,3 simple cubic lattice, 
and tetragonal lattice at arbitrary points, 4 were studied 
and calculated by this method. Similar problems were 
studied also by the method of complete elliptic 
integrals. 5-7 

In this paper, the lattice Green's function of the body
centered cubic lattice at arbitrary points 

I(a' 1 m n) =..!. J J Jt' cos1~ cosmy cosnz dxdydz (1) 
", 1T3 a a - tEe - coax cosy cosz 

is considered. Here r = (l, m, n) and k= (x, y, z) denote 
the lattice point, and momentum. I(a; 1, m, n) do not 
vanish when 1, m, n are all even or all odd. The inside 
and the outside the band are specified by I a I < 1 and I a I 

I(a; 21, 2m, 2n) 

1 "'~" S .. = -3-2) cos21x cosPx dx cos2my cosPy dy 
1T ap-a 0 0 

> 1, respectively. Earlier works on (1) were reviewed 
in Ref. 8. Recently Joyce discussed I(a;l, m, n) and ex
pressed7 l(a;O, 2m, 2n) as a product of 2Fl f~ctions and 
expressed8 1(1;1, m, n) for 0 ~l, m, n'~ 8 in terms of the 
complete elliptic integrals. 

In Secs. 2, 3, and 4 of the present paper, I(a; 1, m, n) 
is calculated by the method of the Mellin-Barnes inte
gral. The value inside the band is obtained by the analy
tic continuation from that outside the band. Results are 
expressed in terms of generalized hypergeometric 
functions. 

'2. OUTSIDE THE BAND 

Now we express the integral (1) in terms of the gener
alized hypergeometric function pF II' First consider the 
case a> I, and l, m, n are all even. We assume l, m, n ;;. ° without loss of generality and we put 1- 2l, m - 2m, 
n - 2n. Expanding the integrand in powers of 1/ a, the 
term-by-term integration gives 

r'(2M+ 1) 1 
(2) (2ZM)SI'(M + 1 + l)r(M -l + l)I'(M +m + l)I'(M - m + l)I'(M +n + l)I'(M _ n + 1) crM+1 

x F ~M + 1, M + 1, M + 1, M + t, M + t, M + t, 1; a-z 
7 e 

M+l+l, M-l+l, M+m+l, M-m+l, M+n+l, 

where M= max(l, m, n). Equation (3) which is reduced 
to eF5 is a closed form outside the band. 

For 1 = m = n = 0, Eq. (3) is reduced to a mown form 

For the case 1 = 0, ,Fe in (3) reduced to 4FS' With use 
of a formula given in Eq. (3.1) in Ref. 3, ~s thus re
duced is transformed into F 4 which can be factored as 
a product of aFl' We assume m ;;. n. 

I(a; 0, 2m, 2n) 

[

m +t, m +t, m +t, m +1; a-2
] 

= Ca-Zm- 1 4FS , 

2m + I, m + n + 1, m - n + 1 

= Ca-Z",.l F4(m + t, m + t; m +n + 1, 

m - n + 1; 1/4cr, 1/4cr), 

where 

. [(2m) 1]2 
c= 28i11 (ml)Z(m+n)!(m-n)! 

Equation (3') agrees with the result by Joyce. 7 

For the case where l, m, n are all odd, we have in a 
similar way, 

(3) 
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I(a; 21 + 1, 2m + 1, 2n + 1) 
r&(2M + 2) 1 

= (22A1+1)3r(M +1+ 2)r(M -l +l)r(M+m + 2)r(M -m + l)r(M +n+ 2)r(M -n+ 1)ttAl+2-

[

M+l' M+1, M+1, M+i, M+~, M+~, 1; a-2 

x7F e 
M + 1 + 2, M -1 + 1, M + m + 2, M - m + 1, M + n + 2, M_n+l] , (4) 

where M= max(l, m, n). 

3. INSIDE THE BAND 

Mellin-Barnes integral representation of (3) is given 
by 

1T-3 / 2 1 
1= ttAl+l • 217i 

r-O+ I" rs(t+M+t)I"(t+M4-1) 
x J -HoC r(t+M+1 + 1)r(t+M -1+ l)r(t+M+m + 1) 

r(t+1)r(-t)(-l/a2)' 

x r(t+M _ m + 1)r(t+ M+n + 1)r(t+M _ n + 1) dt, 
(5) 

where 0 is a positive infinitesimal and larg(-1/aI)1 <1T. 

In considering the case inside the band, a is understood 
to be a = I a Ie-I., hence -1/ a2 == (1/ I aZ I ) exp( - i 1T) • 

The path in Eq. (4) is shifted to the left, i. e., put 
s == t + M + 1, then we have 

1= _rr3lZa-. 1 f- O
+

loO 

21Tt 1-0-100 

ra(s - t)rs(s)r(l- s)r(s)(-l/w)& d 
r(s + l)r(s -l)r(s + m)r(s - m)r(5 + n)r(s - n) s(6) 

. The poles of r3(s - t) are triple poles at s = t - q, q 
== 0, 1,2, ••.. The quadruple poles of r4(s) at s == - q, 
q == 0, 1, 2, ... , are partly canceled by the poles of the 

r 3 (s-i-) 0 0 0 0 0 0 0 0 0 0 

r 4( S) 0 0 0 0 0 0 0 0 0 0 

r (I - SI 

r (S - . .f I x x x X x x x x x x 

r (S-ml x x x x x x x x x x 

r (S - n I x x x x x x x x x x 

r (S+n I x x x x x x 

r (S+m I x x x x 

r (S +.f I x x 

--e -m -n -2 -I 

simple pole 0 0 0 0 

t rip 1 e pol e 0 0 0 0 0 0 0 0 0 0 

0 

0 

x 

x 

x 

0 

0 

0 

denominator, and the resulting poles in the integrand 
are 

(1) s=-q, q= 0, 1, •.• , min(l, m, n) - 1, simple pole, 

(2) s=t-q, q=O, 1,2, "', triple pole. 

These poles are shown in Fig. 1. The contribution of 
these poles is denoted by II(a; 21, 2m, 2n) (i= 1,2,). 

The calculation of the residues of the simple poles is 
straightforward and the result is 

11 (a; 21, 2m, 2n) = (- ) l+m+ftS1mn a 

_1<' [1+l, 1-1, l+m, 1-m, l+n, 1-n; a2l. 
X~5 1 3 3 3 1, ,2, 2, 2 

(7) 

4. INSIDE THE BAND-CONTINUED 

In this section we consider the contribution of the 
triple poles, i. e., la(aj 21, 2m, 2n). The residue of the 
integrand (6) at s = t - q is given by 

oS /2 I 1 d
Z r.( 1 )3 

- 17 a 2T ds2 .t s - 2 + q 

f'3(s - t)I"(s)(1T/sins1T)(- 1/aI)· ] 

-3/2 (-W aa [( 1 »()] 
=-1( a"27?"'d? h 5--Z+q 1('15 5 .=1/2-4' (9) 

where 

0 0 0 0 0 0 0 0 0 10 0 0 
I 
I 

x x x x x x x x x I 
I 

x x x x X X X I 
I 

x x x x x I 
I 
I 
I 
I 
I 
I 

2 3 n m 1. 1M tl 

• 10 0 0 

I 
I 
I 

. FIG. 1. The poles of the integrand of Eq. (6). Abscissa denotes He s. 0 pole of each factor in the denominator. x pole of each 
factor in the nOminator. The last two lines below the horizontal line indicate resulting poles in the integrand. 
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() 
r(1-l- s)r(1 + l- s)r(1- m - s)r(1 + m - s)r(1- n - s)r(1 +n - s)sin2s1T(- 1/1f)& g s - --'-----'-...:.:...--'--'-------,::.ri...-~""'_~~---'---'----'-"'--....;;.,:'-.:-..... - f9(i - s)f'S(1- s) 

(10) 

h(s) = (1TS/ sin1Ts)s. 

Taking 

limh(s) = 1, 
.~o 

lim dh(s) =0 
.~O ds ' 

lim tJ2h(s) = r 
.~O ds 

into account, we have 

rhs of (9)= _1T~S/2a[(-1)q/21Ta][1T2g(s) +g-"(S)] •• 1/2-q> 

where (11) 

g-'(s)=g(s)[-l/I(1-l- s) -l/I(1 +l-s) -l/I(1-m - s) 

-l/I(l +m -s) -l/I(1-n-: s) 

_ l/I(l + n - s) + 21T cotS1T + log(- 1/ a2
) + 3l/1(! - s) 

+ 3l/1(1- s)], 

g"(s) =g(s){[-l/I(l-l- s) -l/I(l + l- s) -l/I(l- m - s) 

-l/I(l +m-s) -l/I(1-n-s)-l/I(1 +n- s) 

+ 21T cotS1T + log(- 1/ a2
) + 3l/1(! - s) + 3l/1(1- s)]Z 

+ [l/I'(l-l- s) + l/I'(l + l- s) + l/I'(l- m - s) 

+ l/J' (1 + m - s) + l/I' (1 - n - s) + l/I' (1 + n - s) 

(12) 

- 21Tz CSCzS1T - 3l/1' (! - s) - 3l/1'(1- s)]}. (13) 

Here we define three functions ,Fq, pG q, and pHq as 

= .! f) (a1),.(aah(a,)k(a4),.(a5),.(aah 
1T k=O k I (blh(bah(bs),.(b4),.(b5),. 

X zk[l/I(1+k)+l/I(b1+k)+ ••• 

+ l/I(b5 + k) -l/I(a1 + k) 

- l/I(aa + k) - ••. - l/I(aa + k) - logz], (14) 

- b t (a1),.(aa),.(a,),.(a4),.(a5)k(aa),. zk[l/I(l + k) 
- 21T k=O k! (bl),.(bah(bs)k(b4Mb5)k 

+ l/I(b1 + k) + ..• + l/I(b5 + k) - if;(a1 + k) - l/I(aa + k) 

- ... -l/I(aa + k) - logz]2, (15) 
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+ l/I'(b1 + k) + .•• + l/I'(b5 + k) -l/I'(a1 + k) -l/J'(az + k) 

-'''-l/I'(aa+k)]. (16) 

Then the contribution of residues of triple poles is given 
by 

Jz(a; 2l, 2m, 2n) = (- ) l.m·"[aF5 + i(aG5 - sH5 - aF5)] 

x [i-l, i+l, i- m, i+m, i-n, i +n; a21 
1, 1, i, i, i J (17) 

where the arguments 

[
; , , , , ; aZ] 
, , , , 

of tl5' aG5' aH5' and aF5 are all same. 

The final result is given by 

J(a; 2l, 2m, 2n) = (- 1)'·III.lt8lmn aSF5 

XI[l+l' l-l, 1+m, 1-m, ~+n, 1-n; a~ 
1, 1, !, !, ! J 

+ ( - 1) l.m·"(aF5 + i(aG5 - aH5 - aF 5)] 

x 2 - ,2 ,2 - m, 2 m, 2- n, 2 n, a 
[

1 1 l+l 1 1+ 1 1+. a

J 1, 1, i, i, t . 
(18) 

In a similar way we have for the case where l, m, n 
are odd 

J(a; 2l + 1, 2m + 1, 2n + 1) 

_ ( l)'.m."F [1+l' -l, l+m, -m, 1+n, -n; ttJ 
- - - a 5 1, 1, t, i, t 

U~ -l, !+l, t-m, !+m, t-n, !+n; aZJ x 3 3 3 • 
, 1, 2, 2, 2 

(19) 

We obtain the leading term for a - 0 from the term of 
k = O. For the even case we have 

J(a; 2l, 2m, 2n) 

= (_1)'·m.n[8lmna+ (1/1T)(- 6y- 61og2 -l/I(i -l) 

-l/!(i +Z) -l/!'(t-m) -l/!(t+m) -l/!(t-n) -l/!(t+n) 

-loga~ 

+i{- t+ (1/2r)(- 6y- 6Iog2-l/!(t-l) -l/!(t+l) 

-l/!(t- m) -l/!(i +m) -l/!(t- n) -l/!(t +n) 

- loga2)a}] + O(aZ), (20) 

where the term O(aZ) contains those of a2 (loga)2 and 
If (loga). Thus the nature at a - 0 is of the logarithmic 
divergence for the even case. For the odd case, 

J(a; 2l + 1, 2m + 1, 2n+ 1) 

= (- 1)''''·"(- 1 + (2l + 1)(2m + 1)(2n + 1)(a/1T)(3if;(1) 



                                                                                                                                    

1503 S. Katsura and H. Watanabe: Lattice Green's function 

(III) 
0.5 

-0.5 

0.5 1.0 1.5 0.5 

(222 ) 

0.5 

-0.5 

0.5 1.0 1.5 0.5 

( 333 ) 
0.5 

-0.5 

0.5 1.0 1.5 0.5 

( 444) 
0.5-

-0.5 

05 1.0 1.5 0.5 

FIG. 2. Values of l(a; l, m, n). R: Real part. I: Imaginary part. The abscissa denotes a. 
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+ 3¢W - ¢(~ -1) - ¢(i + 1) - ¢(~ - m) - ¢(i + m) 

-I/I(~- n) -I/I(i+n) _loga2) + (ia/2w2)(31/1(1) 

+ 3¢(i) -I/I(~ -1) - ¢(i +l) -I/I(~ - m) -I/I(i +m) 

-I/I(i - n) -I/I(i +n) _logaZ)2 - (31/1'(1) + 3¢'W 

- ¢'(i -l) - ¢'(i +l) -I/I'(i - m) - ¢'(i +m) 

- ¢'(i - n) -I/I'(i +n» - 27T2}] + O(a2
), (21) 

then, we see 

ReI(O; 21 + 1, 2m + 1, 2n + 1) = (- 1) l+m."+1, 

ImI(O; 21 + 1, 2m + 1, 2n+ 1)=0. 

An expansion of I(a; 1, m, n) near a= 1 can be ob
tained in a similar way as in the case of square lattice. 3 

The values I(1;I,m,n) for 0 ~1, m,n~ 8 have been 
expressed by combinations of elliptic integrals by 
Joyce. 6 The leading singularity at a-1 have been given 
by Morita and Horiguchi. 9 

Equations (3), (4), (18) (19) supply simple, general, 
and rapid subroutines for the calculation of the lattice 
Green's functions of the body-centered lattice at arbi
trary points inside and outside the band. 

Figure 2 shows some of ReI(a; 1, m, n) and 
ImI(a; 1, m, n) calculated. Parts near a-O, which show 
very sharp changes, are omitted. In some subfigures, 
they have another maximum or minimum and tend to 
± infinity with opposite directions. Tables and figures 
of I(a; 1, m, n) for 0 ~ 1, m, n ~ 5 giving lOD values will 
be supplied on request. 
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5. CONCLUSION 

In this paper lattice Green's functions for the body
centered cubic lattice at arbitrary pOints were calculat
ed. The value for the outside of the band is continued 
analytically and gives that for the inside of the band. 
The method of Mellin-Barnes integrals is adopted. It 
gives general expressions and subroutines for arbitrary 
1, m, and n, and does not require repetitious use of 
recurrence relations of I(a;l, m, n). 
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Multigroup replication property for external, spherically 
symmetric problems of transport theory 

R. ielazny and T. Duracz 
Institute of Nuclear Research, Swierk by atwock. Poland 
(Received 5 February 1973) 

The replication property for multigroup spherically symmetric external problems in the transport 
theory is derived and applied to reduce the system of multigroup integral transport equations to a 
system of planelike singular integral equations, which can be solved by means of well-known 
methods. 

1. INTRODUCTION 

In this paper we propose a method of derivation of 
planelike singular integral equations for spherically 
symmetriC, external problems in transport theory. 
By external problems we understand problems in which 
the concentric internal sphere is filled by a black 
(completely absorbing) material. The outer shell ex
tends from the radius of the black sphere R to the outer 
radius R1• For the simplicity we consider that the scat
tering of particles is isotropiC, the medium of the out
er shell is homogeneous and there are no sources of 
particles in it. Presented results can be applied as 
well in the neutron transport theory as in the astro
physical problems, wherever linear transport is ap
plicable. The proposed method is an extension of the 
known and already applied method of replication prop
erty for the integral transport equation to new and up 
to now not explored situationS. The replication proper
ty has been introduced for internal spherical and cy
lindrical problems. 1,2 This method, as concerns final 
results, is equivalent with the method of integral trans
forms, used originally only for internal problems. 3 

Recently after deriving our results we have found that 
the integral transform method has also been used for 
particular external problems4 (R1 = 00, monoenergetic 
case), 

Some analogies to our ideas presented here one may 
find also in the paper of Sahni. 5 However the expIicite 
formulation of the idea of "replication property" for 
spherically symmetric external problems seems to be 
presented for the first time in this paper and, more
over, from the very beginning for the multi group case. 

2. THE REPLICATION PROPERTY 

The N-group integral transport equation in the case 
of isotropiC scattering and a homogeneous medium, ex
tended from the radius of the internal black sphere R 
to the outer radius R1, has the form 

ni(r)~tCiJ J:1drnJ(r') (1 dv(expC a'lr_r'l) 
J=l ) 0 v \' \" v 

-exp{- :i[(r2_R2)1I2 +(r'2_ R 2)1/2J}), 

i= 1" • . ,N, (1) 

where n({r)/r is the density and ai is the total cross 
section for the ith group,' and ClJ describes the transfer 
from the jth group to the ith one. The groups are num
bered as follows (assuming l/aN as a unit length): al 
>a2>'" > (TN = 1. Inserting into the rhs of Eq. (1) 

nJ(r) == 1'Jse"I'" 

we obtain 

where 

(a)~J" dr'e r"'" (1 dV e ta,/II)/("'-1'), 
R )0 v 

(b)~f:1 dr' e""'" I: ~ e(a,M/(M", 

(c) ~ JR
R1 dr' e1"I", 101 (dv/v) exp{- (a,/ v)[(~ _R2)l 12 

+ (r'2 _ R2)l/2J). 

Integrating over r' in (a) and (b), we find 

(a) == er '", P dV(ai + 1. )-1 
)0 V v M 

(2) 

-l>vexp[- (aJv)j~(:: + ~r exp[ R(:i +~) ] 
(b)==fo1dVe(aIM";(~- :'f exp[Rl(~- ;)] 

_ erl"'J 1 dV(...!:. _ al)-l. 
o v fJ. v 

For -l/a, ~ fJ. ~ 0 in (a) and 0 ~ fJ. ~ 1/a, in (b) the inte
grals are Singular; they will be understood in the prin
cipal value sense. 

Since [Ref. 6, Sec. 4, 17, Eq. (8)] 

exp[ - (a/v)(r2 _R2)1/2J = exp[- (a/v)r) + a;Rf"de: 
Jo € 

ft[(Ra,/v()(zJ - (2)1/2J -(OJ Ie)" 
X (IJ! _ (z)iI! e 

(II is the modified Bessel function of the first kind), 
we have 

(e) == (d) + (e), 

where 

(d) ~( 1 dVexp[ _ (a,/v)r] 1:. (Rl dr' exp[(r /fJ.) 
10 v h 
_ (a/v)(r'2 _R2)1/2], 

(e) == aiR f1 dv J Rl dr' exp[(r' / J..L) _ (a,/ v)(r,2 _ R2)l/2J 
Jo v R 

X ( .. d( I1[ (Ra J V()( zJ _ (2)112] 

J 0 € (Vt _ (2)112 

Xexp[ - (a.!()r]. 
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Interchanging the order of integration in (e) we obtain 

( )-J 1 d~ [( /)] aiR }1 dv I1(RaJv~)(Jl- ~a)I/2] 
e - exp - av~ r - - (i12 2)112 o € • II -€ 

xf: dr'exp[r' jp.-a/v(r,2 _R2)1/2]. 

Finally we find 
N 

~ CIJ J R1 dr' 71J exp[(r'1 p.)] J0
1 

(dvl v)[exp{- (aJ v) I r - r'l} 
J=l ~ 

_ exp{- (a/v)[(r 2 _ R2)1/2 + (r'2 _ ~)1/2)}] 

={QI(P.) exp[(rl p.)] + J
0

1 
dV[i3l(v, p.) exp[(aJv)r] 

+ ")II(V, p.) exp{ - (a/ v)r)]} 

where 

")II(V, p.) = _1: (1: + al)-l exp[R(11 p. + a/v)] 
v p. v 

- wl(v, p.), 
where 

WI(V, p.) = w~(v, Il) + w~ (v, Il), 

I ) 1 ~ Rl [ I I (2 2)1/2] WI(v, p. = - dx exp x p. - al v x - R , 
V R 

H( )_ a lRfl d~ II[(RaJv~)(E2- v2)1/2] 
WI v, P. - v v e (€2_ 112)112 

X J:l dx exp[xl p. - a/ €(x 2 _ R2)1/2]. 

(3) 

(4) 

(5) 

In (4) for ° -'S P. -'S 1/al and in (5) for -1/al -'S p. -'S 0, re
spectively, i3 l(v, p.) and ")11(11, p.) are treated as principal 
values, in accordance with the previous remark about 
singular integrals. The formula (3) describes "the rep
lication property": expression (2) inserted into the 
rhs of Eq. (1) "is replicated" as a sum of expressions 
of the same type (with appropriate coefficients). 

3. APPLICATION FOR DERIVATION OF 
PLANELIKE SINGULAR INTEGRAL 
EQUATIONS 

The replication property suggest that we look for a 
solution of Eqo (1) of the form: 

n (r)= ~ a (/J.)e r/ "'+J.
1

d/J.b (/J.)er/ '''+f 1 dp.d (Il)e-r/ ", 
j IJ.~O I 0 1 0 I , 

(6) 

where o denotes a set of complex numberso Inserting 
the expansi~n (6) in Eq. (1) and applying the replication 
property we obtain: 

~O al(/J.) e
rl 

'" + ~1 dlJ. bj(lJ.) e
r

' '" + J;/ dlJ. d,UJ.) e- rl '" 

= JJ.~(QI(P.) eFt'" + f dv{i3l(v, p.) exp[(a/v)r] 

N 

+ ")II (v, IJ.) exp[ - (a/v)r]})~CiJaJ(IJ.) 
J=I 
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+ fdp.(QI(- p.)e-(r/,,)+ J.ldv{~,(v, - p.)exp[(a,/v)r] 
o 0 N 

+')Ij(v, - /J.) exp[- (a/v)r]}) ~ CiJdj(/J.). 
J'1 

Equating now coefficients of e r
/" we find 

N 

al(p.) = Qj(p.) ~ ClJaJ(p.), p. EO, (7) 
J=l 

N 

bl(/J.) = '); a'~j(alIJ., v) ~ C IJaj(v) 
vEO J=l 

N 1 N 

+ QI(IJ.) ti C jJb J(IJ.) + fo dVCTl i3,(CT,IJ., v) ~ C obJ(v) 

1 N 
+ 10 dVa'~j(CTIIJ., - v)~ CIJdJ(v), IJ.E[0, 1], (8) 

J=I 

N 1 
d,(p.)= ~ <11(al/J., v)~ CiJaJ(v) + fo dva,")I,(a,IJ., v) 

VEO j=l 

X tc ubiv) + QI(- /-L) t CIJdJ(/-L) 
/=1 J=1 

1 N 
+ Jo dv a(I',(a, IJ., - v) ~ C IJdJ(v), /-L E [0, 1], 

. J=l (9) 

where 

(:l,(v, IJ.)=")II(V, /J.)=O for \v\ >1, \IJ.\ <1 

[definitions (4) and (5) are for I vi < 1, I IJ.I < 1]. 

Let us introduce the notation 

6
1
(X)={1, Ixl -'S 1/al' 

0, Ixl >1/alo 

a is a vector with components a l • A is a matrix with 
elements A IJ • 

Defining 

0IJ(P.) = 61J - QI(/J.)C Ii' 

P iJ(IJ., v) = al~MI/-L, v)C Ii = [vl(/J. - v)] x exp[R1(1/ v 

-l/p.)C,A(p.), 

QjJ(p., v) = al")l I(al p., v)C jJ = - {[ vi (IJ. + v)] exp[R(11 v 

+ 1/IJ.)+alwl(CTIP., v)}C,A(/J.), 

we can write Eqs. (7)-(9) as 

O(/J.)ii(/-L) = 0, IJ. EO, 

O(/J.)b(/-L) = fo1 dv [P(p., v)1)(v) + p(p., - lI)d(II)] 

+ '); P(IJ., v)a(v), /-L E [0, 1], 
vEO 

O(/-L)d(IJ.) = 101 
dv[Q(p., - lI)d(lI) + Q(/J., v)b(II)] 

(10) 

(11) 

+ .0. Q(IJ., v)li(v), IJ. E [0, 1]0 (12) 
liED 

Equations (10)-(12) for coefficients of the expansion 
(6) form a system of singular integral equations (11) 
and (12) and a system of linear equations (10). The 
condition of existence of nontrivial solutions of the 
equation (10) determines the set 0: 

detO(IJ.)=O, IJ.EO. (13) 
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Note, that 

foldll[bj(lI) eT1v +d j(lI) e- T1v] <00 for R ~r~Rl 

and let us introduce new functions 

which are integrable now. 

Let us finally rewrite the system of singular integral 
equations (11) and (12) in the more convenient form 

nUl)b' (M) + SCM) r dll "ii' (II) + Regb(M) = 0, (14) 
o 11- M 

n(M)a'(M) + SCM) f dll (1' (II) + Regd(M) = 0, 
o 11- M 

(15) 

where 

SjiM) = C1A(M)M 

and "regular" terms are the following: 

N Jl dll Regr(M) =:: IJ j(M)M6C Ij -+-exp[ - (1/II)(R1 -R)]dj(II), 
j=l 0 /1 II 

N II 
+ IJ j(M)M6 CiS 6 --exp[(R1/1I)]aill), 

j=l liED ~- M 

Regt(M)=IJj(M)MtCiJ(l dll~(_+l exp[-(l/II)(Rl -R)] 
j=l J 0 ~ II }1 

+ '; wI(ajM, II) exp[- (Rt!II) - (R/M)J)b~(II) 

+ :1 w;(aIM, - II) exp[R(l/II- 1/}1) d~(II)J 

+ IJ I(/1)M£ CiJ L (TeR1v _+1I 
+CJ,w,(CJjM, II) 

j=l liED II M ' 

x exp[ - (R/ M)]) a j (II). 

4. CONCLUSIONS 

Matrices OeM) and SCM) of dominant parts of singular 
integral equations (14) and (15) as well as Eq. (10) are 
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identical with those appearing for plane problems. 7,8 

One may then say, that in this sense the spherical prob
lems have been reduced to corresponding, equivalent 
plane problems. Thus, many of the considerations con
cerning plane problems, e. g., 9,10 are relevant also to 
Eqs. (14) and (15). In the particular cases N= 1 and 2 
there exist vast amount of references, which are well 
known and will be not quoted in a form of a complete 
list. Interested readers are refered to the already 
quoted monograph2 (mainly cases N= 1), references 
connected with two-group problems may be found in 
Refs. 9 and 10. Methods developed for these particular 
cases may be adopted easily to solve Eqs. (14) and (15). 

As the particular cases we get for R = 0 an internal 
problem, for Rl < 00 a critical problem, and for Rl 
= 00 the Milne problem. 

lK: M. Case in Developments in Transport Theory, edited by 
E. Inonii and P. F. Zweifel (Academic, New York, 1967). 

2K. M. Case and P. F. Zweifel, Linear Transport Theory 
(Addison-Wesley, Reading, Mass. , 1967). 

3F. J. Mitsis, "Transport Solutions to the Monoenergetic Cri
tical Problems ," Report No. ANL-6787, Argonne National 
Laboratory, Argonne, lll. (1963). 

40 .J. Sheaks, J. Math. Phys. 13, 203 (1972). 
5D. C. Sahni, J. Nucl. Energy 20, 915 (1966). 
6Tables of Integral Transforms (McGraw-Hill, New York, 
1954), Vol. 1. 

7R. Zelazny and A. Kuszell, "Physics of Fast and intermedi
ate Reactors." Proceedings of a Seminar (International 
Atomic Energy Agency, Vienna, 1962), Vol. II, p. 55. 

8T. Yoshimura and S. Katsuragi, Nucl. Sci. Eng. 33, 297 
(1968). 
~.E. Burniston, C.E. Siewert, P. Silvennoinen, and P.F. 
Zweifel, Nucl. Sci. Eng. 45, 331 (1971). 

lOp. Silvennoinen and P. F. Zweifel, J. Math. Phys. 13, 1114 
(1972). 



                                                                                                                                    

Existence and uniqueness of solutions to Low's problem 
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In the framework of S -matrix theory, the partial scattering amplitudes are sought as a solution of a 
certain problem involving analyticity, unitarity, and crossing symmetry. This problem, with a 
condition of analyticity which is weaker -than the usual one, is called Low's problem in this paper. 
By means of the fixed-point theorems of Schauder and Banach-Cacciopoli, conditions for the 
existence and uniqueness of solutions to Low's problem are given. 

I. INTRODUCTION 

In this paper we shall discuss the question of the exis
tence and uniqueness of the solutions of a certain prob
lem from S-matrix theory. The problem is to find N 
functions h"(z), a = 1, 2, ... ,N (the partial scattering 
amplitudes) of the complex variable z = x + iy which sat
isfy the following conditions: (a) analyticity in some sub
region of the plane z; (b) unitarity; (c) crossing sym
metry; (d) reality; (e) a condition on behavior at infinity. 
This problem (a)-(e), which will be formulated more 
precisely below, is called Low's problem in this paper. 
It is a generalization of the problem solved by means of 
the integral equations of Low,1 Chew and Mandelstam,2 
Shirkov3

,4 and the like. 

We shall make use of the fact that the problem (a)-(e) 
can be re-formulated as the algebraic system (5). Al
though this system is nonlinear and infinite, it is in 
some respects sufficiently simple and can be investi
gated by means of the fixed-point theorems. 5,6 Following 
this method we shall prove, with the help of Schauder's 
theorem, the existence of solutions of (5). After im
posing additional limitations it will be shown on the ba
sis of the Banach-Cacciopoli theorem that these 
solutions are unique. 

Recently several authors have shown interest in simi
lar questions. For instance, Warnock7 and MacDaniel 
and Warnock8,9 have studied the conditions under which 
there exist solutions of Low's integral equation, while 
in Refs. 10 and 11 Atkinson has made a detailed mathe
matical analysis of the integral equation of Chew and 
Mandelstam, and of Shirkov et al., respectively. 

These authors examine the question of the existence 
and uniqueness of the solutions h"(z) of the integral 
equations with the assumption that h"(z) have at most 
one pole in the cut plane z. 

Some of the results they obtained are less general 
than those obtained in the present work, because here it 
is supposed that h"(z) may have not only poles but also 
more complicated singularities, e. g., cuts. 

The approach in this work differs from the usual ap
proach by the way in which the analytical functions are 
represented. For instance, in the integral equation of 
Low, the functions h"(z) are represented through the 
Cauchy integral, while here Laurent's series are being 
used. 

The algebraic approach has some peculiarities which 
manifest themselves both. in the theoretical studies and 
in the p.umerical calculations (Refs. 12-14). 

Because of the specific features of the algebraic sys-

tem (5) it is appropriate to use the conventional methods 
of nonlinear functional analysis, such as Newton's meth
od and the principle of contracting mappingS,6 as, for 
example, applied in the Low amplitude method. 13,14 On 
the other hand, the integral equations of dispersive type 
are solved numerically exclusively by means of the N/D 
method or the inverse Low amplitude method,8 which -
techniques are specific for that class of problems. The 
theorems proved in this work are a more preCise ver
sion of the theorems of Ref. 15. They justify the ap
plicability of the numerical methods of Refs. 12-14. 

In Sec. IT, the precise formulation of Low's problem 
is given. Besides that, it is shown that under certain 
conditions it is equivalent to the algebraic system (5). 
In Sec. ITI, by means of Schauder's theorem, the exis
tence of solutions of the system (5) is proved. In Sec. 
N, using the theorem of Banach-Cacciopoli, other con
ditions have been found guaranteeing both the existence 
and the uniqueness of the solutions of (5). 

II. FORMULATION OF LOW'S PROBLEM 

Here we shall summarize the basic results from the 
papers, 13,14 which we shall need in our further work. 

By Low's problem we mean the problem in which N 
functions h"'(z), a = 1, 2, ... ,N of the complex variable 
z = x + iy are sought which obey the following conditions: 

(a) Analyticity: h"'(z) are analytic in p- s~, where the 
region p is the plane z from which the points belonging 
to the cuts - 00 ~x ~ - 1 and 1 ~ x ~ 00 have been taken 
away, and the closed regions s~ is a subregion of the 
region p. 

(b) Unitarity: Imh"'(x)=f(x)lh"'(x)l2, l~x~oo, where 
f(x) is a real function the properties of which are 
specified below. 

(c) Crossing symmetry: h"'(- z)= ~;1 C",B hB(z), where 
the crossing matrix CaB is equal to the square root of 
the unit N-dimensional matrix, but otherwise is 
arbitrary. 

(d) Reality: h*"'(z}=h"'(z*). 

(e) Behavior at infinity: The integrals in (1) converge. 
The contribution of the contour integrals f h"'(z)dz/z 
taken on a semicircle with an infinite radius in the upper 
half-plane is zero. 

The problem (a)-(e) is a generalization of the problem 
which is solved by means of Low's integral equation. 1,8,9 
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(1) 

where C",a, a, f3 = 1, 2, ... ,N is the crossing matrix and 
A = _"L,N C",aX are numbers proportional to the coupling 

'" a=l a 
constant f2. 

With an appropriate choice of x'" and C",a one could 
describe by means of (1) the partial scattering ampli
tudes of various processes, e. g., of the 11-N 
scattering. 1,16,17 

By the conformal mapping 

z = 2Z/1 + Z2, (2) 

where Z = Y + iY = Rel~, the cut plane p goes over into 
the interior P of the unit circle Co of the Z plane, the 
functions h"'(z) are transformed into the functions H"'(Z), 
the regions s~ into the regions Sr. 

The regions S'j contain all singularities of H"'(Z) 
which lie inside Co' By analogy we shall denote by S~ 
closed regions which contain all singularities of H"'(Z) 
lying outside Co' [All singularities in S~ were situated 
on the second sheet of h"'(z) before the conformal map
ping. Some of them correspond to the resonances, if 
any.] 

Let the curves dSr and dS~ denote the boundaries of 
S'j and S~, respectively. The functions H"'(Z) are ana
lytic in the annular regions D '" which are bounded from 
the inside by the curves dS'j and from the outside by the 
curves dS~. 

For several purposes instead of regions D'" their sub
regions D~ are preferred. The D~ are defined as the 
circular rings R'j < I Z I < R~, R'j .;: 1, R~? 1, the Rj 
being the radii of the circles I Z I =Ri which are tangent 
to the curves dSi and R~, the radii of the circles I Z I 
=R: which are tangent to the curves dS~. 

After the conformal transformation the problem (a)
(e) turns into a problem for the transformed functions 
H"'(Z). This problem, after some generalization, will 
be formulated in the following way. 

Find the functions H"'(Z), a= 1, 2, ... ,N which satisfy 
the conditions: 

(A) Analyticity: H"'(Z), Z ED'" are analytiC. 

(B) Unitarity: ImH"'(Z) =F(cp) IH"'(cp) 1
2

, where F(cp) 
=f(l/coscp), - t11';:Cp .;:t11 and H"'(cp)=H"'(el~). 

(C) Crossing symmetry: H"'(cp + 11) = "L,;'l C",a Ha(cp), 
-11';:CP';:11. 

(D) Reality: H"'*(Z) =H"'(Z*). 

Further on we shall suppose that H"'(cp) are Holder 
continuous. Under this notion we shall mean functions 
H"'(cp), which satisfy the conditions: 

H"'(cp+211)=H"'(cp), a=I,2,.,.,N, 

IH"'( CP2) - H"'( CPl) I .;:K I CP2 - CPll', where K> 0 is a 

suitable constant and 0 < E .;: 1 and - 11 -1) .;: CPl' 
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Under this hypothesis the functions ReH"'(cp) and 
1m H"'( cp) are Holder continuous and coincide with their 
Fourier series. This is sufficient to assert that H"'(Z), 
I Z I = 1 can be expanded in Laurent series 

H"'(Z)='E H~Z", Izi =1. (4) 
n=-oo 

Taking into account the conditions (B), (C), and (D), 
one can derive the following algebraic system which is 
to be satisfied by the unknown coefficients H~ .. 

H~=H~v+ 6 
m,k=-eo 

F(v,k)E~(Hm;Hm.k)' a=I,2, ..• ,N, v=I,2, •.. ,00, 
(5) 

where 

J
O/2 

F( v, k) = 11-1 dv sinvcp cos kcp F(cp) 
-./2 

(6) 

and 
N 

E~(Hm;Hm.k) =H:H:.k + (- l)v6 C",a H!H~.k· 
a=l 

The system (5) has been derived in Ref. 14. 

The following theorem is based on the corresponding 
theorem in Ref. 14. It clarifies the equivalence between 
the analytical formulation of Low's problem through the 
conditions (A), (B), (C), (D) and its algebraic formula
tion given by the system (5). 

Theorem 1: Let the functions H"'(cp), a= 1, 2, .,. ,N 
satisfy the conditions (3), (B), (C), and (D) and let F(cp) 

satisfy the condition 

IF(CP2)- F(CPl) I .;:Kli CP2 - CPll'l, - t11 ';:CPl' CP2 .;:t11, 

where K 1> 0 is a suitable constant and 0 < El .;: 1 

F(± t11) = O. (7) 

Then the coefficients of the series (4) H~, 
a=I,2, •.• ,N, n=O,±I,±2, ... ,±oowill satisfy the 
algebraic system (5). 

With certain modifications of the theorem the opposite 
assertion is also true: 

Let the system (5) have real roots H~, a = 1, 2, ... , N, 
n = 0, ± 1, ± 2, ... , ± 00 satisfying the following conditions: 

The series tH~ sinncp and t H~" sinncp, 
"=1 n=1 

Cl! = 1, 2, ... , N, converge on the whole interval 

-11';:CP';:11 to certain functions V~(cp) and V~(cp), 

respectively, which are known to satisfy the 

HOlder condition with the exponent E, 0 < E < 1 

on the interval [- 11 -1), 11 + 1)], where 1) is some 

pOSitive number 
N 

H~ =(-I)"j;{ C",aH~, a= 1, 2, ... ,N, 

n=O,-I,-2, .•. ,-oo, 
and let F( cp) satisfy the condition (7). 

(8) 

(9) 

Then the series (4) converge to the functions H"'(Z), 
Cl!= 1, 2, ... ,N which satisfy the conditions (3), (B), (C), 
(D). 

If besides that the roots of (5) satisfy the condition 
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Ct=1,2, ••• ,N, n=0,1,2, ••• ,00, (10) 

IH~I""H(R~tn, Ct=1,2, •.. ,N, n=1,2, ••. ,00, 
where H is a positive constant and Rf and R~ are the in
ner and the outer radii of the annual region D~. Then 
the functions H"'(Z), Z E D~ are analytic and satisfy the 
conditions (B), (C), (D). 

Remark 1: Using a result of Ref. 18, Chap. il, Sec. 
3, we conclude that if IH~I';; const. [1/lnl(1+E)] then 
condition (8) is automatically fulfilled. 

Remark 2: Condition (10) induces the analyticity of 
H"'(Z) in the region D~ which is a subregion of D"'. This 
condition is introduced because it is convenient for the 
proof of the existence theorems in Sec. III and Sec. IV. 

In what follows it is advisable instead of system (5) to 
investigate its equivalent system14 

t ==A(t), (11) 

where t-t:, Ct=1,2, ..• ,N, v=1,2, ... ,ooisanele
ment of the metric space, and the operator A is defined 
by the right-hand side of the system: 

t: =6 F(v; X - J..I.)E~(tx;t,..) + 2 6 F( v;X - J..I.) E:(T ,,;tx) 
A,~ A,U 

+ 2 L:F(v;~ + X) E:(K(;tJ + 2 6 F(v;~ + X)E:(R_(;Tx) 
(,X (,X 

+ 6 F(v;X - J..I.)E:(Tx;T,,) + L: F(v;~ -1'/)E:(R_(;R_~) 
A, u l'TI 

(12) 

In (12), as well as in the following, ~, 1'/, X, J..I., v, and 
Ct are indices. Furthermore, ~ and 1'/ take the values 
0,1,2, ... ,00; X, J..I., v take the values 1,2, ... ,00 and Ct 
= 1, 2, ... ,N, unless stated otherwise. In (12) the values 
R_( and Tx are known, and the values t~ are sought. 
Moreover, R~( denotes H~(, and t: + T~ is equal to H:. 
The values H~( =R~( are considered to be known. For 
example, R~1 = tx"" where X'" is the baryon pole residue, 
which is written explicitly in (1). 

It is supposed that approximate values are known for 
H: which are denoted by T~. Therefore, in (12) the small 
corrections t~ to the approximate values T: are sought. 

III. APPLICATION OF SCHAUDER'S THEOREM 
FOR PROVING THE EXISTENCE OF 
SOLUTIONS OF LOW'S PROBLEM 

System (12) is very convenient for numerical deter
mination of the solutions of Low's problem. 13,14 In the 
present paragraph we shall use it in order to prove the 
existence of such solutions. For this purpose, we shall 
make use of one of the fixed-point theorems-Schauder's 
theorem. 

Schauder's theorem is formulated in the following 
ways: 

Let the operator A from (11) have the properties: 

(1) A maps the bounded, closed convex set U belonging 
to the Banach space B into itself, i. e., if t E U, then 
A(t)E U. 

(2) A is a completely continuous operator. 
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Then at least one element of the set U exists, which 
is a solution of (11). 

The application of Schauder's theorem to Low's prob
lem is facilitated by making use of the function 

Xk(n) ==x(jk;n) = In I-J k, n= ± 1, ± 2, ... , ± 00 

Xk(O) == X(j k; 0) = 1. 

In our case jk' k = 1, 2, 3,4 are numbers larger than 1. 

The sets U t , U
T

, and UR which we use below are de-
fined, respectively, by the inequalities 

It~l.;;t*X(j1'X), Ct=I,2, ..• ,N, X=1,2, ... ,00, (13) 

IT~I';;T*X(j2'J..I.), Ct=1,2, ..• ,N, J..I.=I,2, ... ,00,(14) 

IR~( I';;R*X(j3' ~), Ct= 1, 2, ... ,N, ~ ==0,1,2, ... ,00. 

In (13), (14), and (15), t*, T*, and R* are positive 
numbers. 

The function X is convenient for the estimation of 

(15) 

F(v, ~*) also. This expression is defined by the integral 
(6), which in this case is conveniently put down in the 
form 

F(v;~*)= ;7r £'/2 
dc;o[sin(v+ ~*)c;o+ sin(v- ~*)c;o]F(c;o). 

-./2 
Further on we shall suppose that 

IF'(c;oz)- F'(c;ol) I.;;const Ic;o2 - c;o11', - t7r ,;;c;o1' c;o2.;;t7r, 

O<e.;;1 

F'= dF • 
dc;o 

Let us consider the auxiliary function 

F(c;o) ==F(c;o), - t7r';; C;O.;; t7r, 

F(c;o) ==0, t7r,;;c;o.;;3(7r/2). 

(16) 

It is obvious that;" (c;o), - 7r .;; c;o .;; 7r is Holder con
tinuous with an exponent e, 0 < e .;; 1. This means that the 
Fourier coefficients of the function F( c;o) obey condition 
Fn==O(1/lnl<l+E» (for proof, see Sec. III in Ref. 19). 

Hence F(v, ~*) can be majorized by the inequality 

F(v;~*).;;const[(v+~*)"J4+(V-~*)"J4], j4>1 if v±~**O, 

F(v;~*) = const, if v ± ~* == O. 

Using the function X(j4' n) introduced above, at n 
= v+ ~* and n== v- ~*, and choosing an appropriate 
positive constant F we obtain the i'nequality 

F( v; ~*) .;; F[X4(V + ~*) + X4( v - ~*)]. (17) 

By means of (13), (14), (15), and (17), Eq. (12) is 
majorized by inequalities containing X. In order to sim
plify these inequalities it is convenient to use the 
formula 

.. 
L: X4(n)X2(n + m) < K12 Xl(m) + K21 X2(m), (18) 
n:=CI 

where 
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and ,(jl) and ,(j2) are the Riemann ,-functions from the 
theory of numbers. 

When proving (18) it is convenient to proceed from the 
expression 

2:; Xl(n)x2(n - m), 
n=--o 

which is numerically equal to the expression .. 
2:; Xl(n)x2(n + m). 
n=-oo 

The inequality (10) is proved by majorizing for m ~ 2 
the right-hand side of the equality 

2:; Xl(n)x2(n-m)=SI+Xl(0)X2(-m)+52+5g 
n=-ao 

+ Xl(m)X2(0) + S4' 
where 

-1 -1 

51=2:; Inl- J2 <m-J2 2:; Ikl- i1 =X2(m)W2)' 
n=- CI k=-oo 

n' -1 

S2 =L: n-i1
1 n - m l-i2 < m-i2 2:; I k I-il =X2(m)W2)' 

"=1 ~_CI 

n' =0. 5 m is even and n' =0. 5 (m + 1) if m is uneven 
m-I nt-I 

5g = 2:; n-i1(n - m)-J2l < 2il m-h 2:; In - m l-i2 , 

-~ -~ 

< 2i1m-i l t I k l-i 2= 2i1 X (m)W ), 
~1 1 2 

S4= t n-J2 <m- J2 t Ikl-J2 =Xl(m)W2)' 
n=m+l k=l 

For m =0 and 1 the inequality (18) is immediately con
firmed. For m < ° the proofs are analogous. 

In order to satisfy the first condition for the operator 
A we substitute in (12) t~, r~,R~, and F(ZJ, ~*) with the 
expressions from (13), (14), (15), and (17). 

Having the inequality (18) we can easily apply the 
Schauder's theorem to Low's problem. 

For this purpose we choose the Banach space to be a 
subspace of the space of the bounded sequences of 
numbers. s More precisely, we use a space Y, the ele
ments y of which are the sequences of numbers y t' 
IYtl"AX(j,~), ~=_oo ... -2, -1,0,1, ... ,00, j>l, 
the norm being defined by equality 

lIyll = sup IYt I· 
t 

As (18) holds only for j> 1 in the following we shall 
suppose in (13), (14), (15), and (17), jl> 1, j2> 1, jg> 1, 
and j4> 1, respectively. 

To satisfy the condition A(t) E t, it is enough to put 
down 

(1 + NC)Ft*2:; [X4(V + X - /1) + X4(V - A + /1)]Xl(X)xl(/1) 
A,IL 

+ 2(1 + NC)Ft*r*2:; [X4(ZJ + X - /1) + xiI' - X + /1)]X2(/1)Xl(X) 
A,IL 

+ 2(1 + NC)Ft*R*2:; [X4(V+ X + O+X4(V- X - ~)]X9WXl(X) 
A,t 

+ 2(1 + NC)Fr*R* 2:;[xiv+ ~ + X)+X4(ZJ- ~ - X)]X9WX2(X) 
A,t 

+ (1 + NC)Fr*22:; [X4(ZJ + X - /1) + X4(V - X + /1)lx2(/1)x2(X) 
A,IL 

+ (1 + NC)FR*2 L: [X4( I' + ~ -1]) + X4( I' - ~ + 1] )]XgWXg(1]) 
t ," 

+ R*Xg( 1') + r* X2( 1') < t* Xl( 1'), 

whe re C = max C'" ,8, O!, {3 = 1, 2, ... ,N. When deducing 
the latter inequality it is advisable to suppose at first 
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that N= 1, and C",8=0. In this case in the inequality we 
would have 1 instead of the factors 1 + NC. In the last 
expression NC accounts for the contribution of the term 

N 

(- 1)"LC",8 H~H~+k 
8=1 

in the formula which defines E~. 

Summing over all indices from - 00 to + 00 and using 
(18), we obtain 

2(1 + NC)F t*2[K!1 X4(V) + (K41 K 14 + 2Kl~ll)Xl(ZJ)] 

+ 2(1 + NC)Fr*2[~42 X4(V) + (K~24 + 2K2~22)x2(V)] 

+ 2(1 + NC)FR*2[K~ xi 1') + (K4aK94 + 2Kg~39)x9( v)] 

+ 4(1 + NC)Ft*r*[K~41X4(V) + (K4aK24 + K3~23)x2(V) 

+ K9~92X3(ZJ)] 

+ 4(1 + NC)Fr*R*[K4aK42X4(ZJ) + (K~24 +K3~23)x2(ZJ) 

+K3~92X3(V)] 

+ 4(1 + NC)FR*t*[K4aK41X4(ZJ) + (K4aK14 + K34K I3 )x9(ZJ) 

+K3~31Xl(ZJ)] 

+ T*X2(ZJ) +R*x3(ZJ) < t*Xl(ZJ), 1'= 1, 2, ... ,00, 

We suppose that j2 ~ jl; j3 ~ jl; and j4 ~ jl' Under this as
sumption X2(ZJ) "Xl(ZJ); X3(ZJ) "Xl(ZJ); and X4(ZJ) "Xl(ZJ). If 
we put r* =pt* and R* =qt* and suppose that p + q< 1, 
the above inequality is transformed into the inequality 

t* - t* < 1 - P - q , 
- 1 2(1 + NC)F(U1 + PU2 + qU3 + P2U4 + q2Us + pqU 6) 

where 

U1 =K41
2 + K41K14 + 2K14K ll , 

U2 = 2(K~41 + K4~14 + K24K21 + K2~12)' 

Ug = 2(K~41 + K4aK14 + K34K 9l + K9~13)' 

U4 =~42 + K~24 + 2K2~22' 

Us =K!g + K4aK34 + 2Kg~gg, 

U6 = 2(K~42 + K4aK24 + K9~24 + K9~92)' 

(19) 

Let us suppose that t* is so chosen that inequality (19) 
is satisfied. In respect to (13) that means that the ab
solute values of the left-hand side of the system (12) 
are less than the absolute values of those on the right
hand side. In other words, if inequality (19) is satisfied, 
the set U1 = U t is such that A(U1) E U1• And because by 
(13) U 1 is a bounded and convex set, it follows that con
dition 1 of Schauder's theorem has been satisfied. The 
second condition of Schauder's theorem demands that A 
should be a completely continuous operator. Let us re
call the definition of a completely continuous operator5 : 

the operator A is completely continuous on the set U1 if 
it is continuous on U1 and compact on Up i. e., when A 
maps every bounded subset of U1 into a compact one. 
The operator A is continuous on U1 • This is easily 
proved with regard to formula (23) from the next section. 
The compactness of U1 is proved when taking into con
sideration that according to its definition U1 is 
compact. 20 

Therefore, if condition (19) is satisfied, which with an 
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appropriate choice of the parameters t*, p and q can 
always be achieved, then all the requirements for the 
applicability of Schauder's theorem are also satisfied. 
This result is expressed in the following theorem: 

Theorem 2: 

Let (16) be satisfied. Let sequences of numbers 

R~f' 0!=1,2, ... ,N; ~=0,1,2, ... ,00 

are known such that IR~f I .sconst X(j3;~)' (20) 

Then the algebraic system (12) has at least one solu
tion h~, O!= 1, 2, ... ,N, 11= 1, 2, ... ,00 such that h~ 
=O[l/llIl i l], jl>1. 

Let in addition the condition (9) be satisfied. 

Then the series (4) converge to the functions H"'(Z), 
O! = 1, 2, ... ,N, which satisfy the conditions (3), (B), (C), 
(D). In the particular case when the sequences H:, n=O, 
-1, - 2, are finite, the functions H"'(Z), Z ED~ (1 
=R~> IZI ;'R~=O) are analytic. 

Remark 1: Condition (16) can be replaced by the 
stronger condition: 

The function F' ( <p ), - ~7T .s <p .s ~7T is bounded and 

lim [F(<p)(~7T - <p)O+e)] * 00. 

'I'~./2 
(16') 

Proof: In addition to the above motivation in proving 
the theorem we remark that j3 > 1 and j4 > 1, the first 
because of (20), and the second because F~ 
=0[1/ I n I (1+e)], 0 < E.s 1. Then choosing j2 ;, jl and jl > 1, 
we can write j4 ;, jl' j3;' ji and j2 ;, jl' which was supposed 
in deriving (19). So we complete the proof of the first 
part of Theorem 2. 

To prove the second part of the theorem, it is suffi
cient to demonstrate that the conditions of the inverse 
part of Theorem 1 are satisfied: 

Condition (8) is indeed fulfilled. This is a consequence 
of the fact that according to the first part of Theorem 2 
IH: I .s const X(jI' n) n=O, 1,2, ... ,00. Condition (20) 
means that I H~ I .s const X(j3' n). From here, in connec
tion with a theorem of Ref. 18, Chap. n, Sec. 3, it fol
lows that V~(<p) and V~(<p) exist and satisfy the HOlder 
condition with exponent E, 0 < E.s 1, on the interval 
[- 7T -11, 7T + 11], where 11 is some positive number. 

Condition (19) of Theorem 1 is also fulfilled because 
it figures in Theorem 2 as well. 

Condition (7) of Theorem 1 is satisfied because it is 
a consequence of condition (16) of Theorem 2. 

With this the proof of Theorem 2 is completed. 

Let us consider the application of this theorem in two 
special cases. 

(a) Suppose that R~f = 0, ~ = 2, 3, ... , 00 and R~l 
= A ",/2 

With these assumptions and the appropriate choice of 
C"'B Low's problem corresponds to the problem resolved 
by means of the integral equation of Chew and Low. The 
existence of solution to this problem depends mainly on 
the properties of the cut-off function. 
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So in the case of the G. Salzman and F. Salzman's 
choice of cutoff functionf(x) = [(x - 1)3/2 /127T] exp[ - (x2-
- 1)/4m.], where m. is the meson mass, passing from 
f(x) to F(<p), we conclude that the condition of Remark 
1 to Theorem 2 is satisfied. Hence the problem has at 
least one solution H(Z) which is analytic at least in re
gion 0 < I Z I < 1. The existence of at least one solution 
to (1) was proved by Warnock7 through its direct investi
gation. 

(b) Suppose that R~f = 0, ~ = 1, 2, 3, ... , O! = 1, 2, ... ,N, 
i. e., the partial scattering amplitudes have no pole at 
the origin. For N = 3 and with the appropriate choice of 
C",B this problem is equivalent to the integral equation 
of Shirkov et al. 3,4 for 7T - 7T scattering in the low-energy 
region. If instead of the function f(x) from Ref. 10 we 
use the function f(x) e- kx

, k - 0 the results of Theorem 
2 could be transferred directly to that case. If we con
jecture that, we can put in the solution k = 0, we may 
conclude that the Shirkov equation has at least one 
solution. 

In particular cases as, for instance, in the case of the 
applications (a) and (b) of Theorem 2, the condition of 
analyticity (A) is satisfied. But in general Theorem 2 
does not guarantee the fulfilment of this condition. More 
general conditions assuring the fulfilment of the four 
conditions are defined in the next theorem. 

Theorem 3: 

Let (16) be satisfied. Let sequences of numbers 

R~f' O!= 1, 2, ... ,N, ~=O, 1,2, ... ,00 are known 

such that IR~f I .s const (Rf)f, where 1> Rr > 0 

are constants. (21) 

Then the algebraic system (12) has at least one solu
tion h~, O! = 1, 2, ... ,N; 11= 1, 2, ... , 00 such that h~ 
=o[1/vil], jl>O. 

Let in addition condition (9) be satisfied. 

Then the series (4) converge for 1 ;, I Z I > R~ to the 
functions H"'(Z) O! = 1,2, ... ,N, which are analytic for 

ZED~(l=R:> IZI >Rf) and satisfy the conditions (B), 
(C), (D). 

Proof: Having in view condition (21) we introduce in
stead of X(j3' n) the function (R~tl nl. 

We remark that the relations (13) and (14) hold also 
for Theorem 3 if relation (i5) is substituted by (15') 

IR~fl.sR'*(Rf)f, 0!=1,2, ... ,N; ~=0,1,2, ... ,00. (15') 

The proof of Theorem 3 can be carried out merely as 
a literal repetition of the proof of Theorem 2. For this 
purpose the relation (12) must be substituted with an 
analogous relation for the expression 

L; XI(n)(R~tln+ml. 
n=-IIO 

This is easily achieved, observing that for K large 
enough (Rif'"' .sKX(jg, n) so that we get the relation 

t Xl(n)(Rn-1n
+

ml .sK~3Xl(m)+K;IX3(m), (12') 
n=-IIO 

where 
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With (15') and (18') instead of (15) and (18) we repeat 
the reasoning leading to the proof of Theorem 2 and get 
the proof of Theorem 3. In Theorem 3 an extra moment 
is the proof of the analyticity of Ha(Z), which is trivial. 

IV. CONDITIONS UNDER WHICH THE 
SOLUTIONS OF LOW'S PROBLEM EXIST 
AND ARE UNIQUE 

With a certain modification of the conditions of 
Theorem 2, one could guarantee not only the existence 
but also the uniqueness of the solutions of Low's prob
lem. This can be achieved by means of the Banach
Cacciopoli contraction mapping principle. The latter is 
another variant of the fixed-point theorems which give 
not only the existence of the solution but also uniqueness 
and a method of calculating that solution. 5,6 

The Banach-Cacciopoli theorem reads5 ,6: 

Let A be an operator defined on the complete metric 
space X satisfying the following conditions: 

(a) A maps the space X into itself, i. e., A(X) EX. 

(b) In X, A is a contracting operator, i. e., if t' and 
t" are two elements of X and if the distance in X is de
noted by p then 

p[A(t"),A(t')] <SAp[t", r], 

where A < 1 is a constant. 

Then Eq. (11) has one and only one solution, which 
can be obtained numerically by the method of successive 
approximations. 

The first condition of the theorem is satisfied if in
equality (19) is satisfied. This assertion needs some 
justifications. In Sec. III, where inequality (19) was 
derived, t~, Q==1,2, ••. ,N, v==1,2, ... ,oowassupposed 
to be an element of the Banach space. This conclusion, 
however, does not depend on the choice of the functional 
space. On that account (19) is also used in the present 
section where the weaker assumption is made, viz. 
that t~ is an element of some complete metric space X. 

The choice of X is not unique. The proofs are, how
ever, simplified if X represents the closed set U t' de
fined by (13) where the distance between the elements t" 
and t' is given by the expression p (t" , t') == suP .. ,y I t~'" 
- t~a I, Q == 1, 2, ... ,N; V== 1,2, ... ,00. It is obvious that 
X is a subspace of the space Co of the converging 
numerical sequences. 6 

The proof of the second condition of the Banach
Cacciopoli theorem is reduced to evaluation of the 
distance p[A(t"), A(t')]. 

Here again, as in the previous section, the conclu
sions are to be made with the assumption that Q ~N = 1 
and COla = O. The transfer to the general case N * 0 and 
COla * 0 in the final result follows immediately. 

We have 

p[A(t"), A(t')] = max I: F(V;A - Il)(t'~ t: - t~t~) 
v .\,~ 

+ 2I: F(V;A -1l)Tu(t~ - t~) + 2I:F(v;~ + A)Rf(t~- t~) 
~ ,U f,~ 
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Setting t~ ==t~ + cP~, we obtain for p[A(t"),A(t')] 

p[A(t"),A(t')] 

= max (LF(V;A - Il)[(t~ + ~CPu) CPx + (t~ + ~CPx)cp,.J 
v ~tu. 

+ 2 L F(V;A -1l)TuCP~ + 2I:F(v;~ + A)RfCPx\' 
x,~ t,A ~ 

Or, exchanging the indices in the last term of the brack
eted expression on the right-hand side, 

p[A(t"),A(t')] = max (2 I: F(V;A -Il)(t~ + ~CPu)cpA 
v A,'" 

+ ~ F(V;A - 1l)T uCP~ + 2~F(v;~ + A)R_ f CPA)' 
At" t ,A 

From the definition of X(j1;n) it follows that 

CPu <s2t*X1(1l) and cP~ <s2t*X1(A). 

We denote by cp the largest of the numbers CPA' 
A=I,2, ... ,00. Obviously, cp==p(t",t'). Then for 
p[A(t"),A(t')] we obtain 

p[A(I"), A(t')] <S max (4t*6 I F( V;A - Il) IX1(1l) 
v A,,,, 

+2T*,E IF(V;A-Il)IX2(1l)+2R*f~ IF(V;~+A)lx3W)CP. 

Introducing (17) into (22) we have 

p[A(t"),A(t')] 

< my ax (4t* FE [X4(V- A + Il) + xiv+ A - Il)Jx1(1l) 

+ 2T*F~ [X4(V - A + Il) + X4(V - A + 1l)]X2(1l) 
~,u 

+ 2R*F6 [X4(V+ ~ + A) + X4(V - ~ - A)Jx3(~~ cpo 
t ,A ') 

(22) 

strengthening the inequality we sum on Il and ~ from - 00 

to + 00. Making repeated use of (18), we obtain 

p[A(t"), A(t')] <S maxI: (4t*F[K41X4( v - A) + K l 4X1(V - A) 
y ~ \ 

+ K 41X4(V + A) + K 14X1(V + A)] + 2T*F[K42Xiv - A) 

+ K24X2(V - A) + K42X4(V + A) + K24X2(V + A)] 

+ 2R*F[K43Xiv+ A) +K34XS(V+ A) 

+ K 43X4(V - A) + K34X3(V - A)]) cpo 

There remains the sum over A. strengthening the in
equality we sum from - 00 to 00. For instance, let us 
conSider the sum 

"'t xiv- A). 
A=·" 

With the substitution v - A = X we have 
00 -1 1 00 1 

6 X4(V- A)= 6 -I-Ii + 1 +]] ( .... )1 ==2b4+ 1, 
X=-oo A=-OO A 4 ~=1 I\. 4 

where b4 means ?;(j4)' Making repeated use of this for
mula in the latter inequality, for p[A(t"),A(t')] we obtain 

p[A(f"), A{t')]< F(t*V1 + T*V2 + R*Vs)cp, 

where 

V1 = 8K41(2 b4 + 1) + 8K14(2?;1 + 1), 

V2 == 4K42(2?;4 + 1) + 4K24(2?;2 + 1), 

V3 == 4K43(2b'4 + 1) + 4Ksi2b'3 + 1). 
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Passing to the general case N> 1 and C",a * 0, as in the 
former section, we obtain the formula 

p[A(t"), A(t')] < (1 + NC)F(t*Vl + r*V2 + R*V3 )q>. (23) 

It follows from (23) that for all the elements of the set 
U t the operator A(t) is continuous since at q> - 0, 
p[A(t"),A(t')]- 0, a result which was used in the former 
section. As q>=p(t", t'), it follows from (23) that the se
cond condition of the Banach-Cacciopoli theorem re
quires that the inequality 

(1 + NC)F(t*V1 + r*V2 + R*V3 ) =y < 1 

is satisfied. Or, with the notations r* = pt* and R * = qt* 

t*< tt = [(1 + NC)F(V1 + PV2 + qV3)]-1. (24) 

The first condition of the Banach-Cacciopoli theorem 
is satisfied if in (19) we choose t* < tt. For the second 
condition it is necessary for t* to be less than the num
ber tt, defined in (24). For that reason the Banach
Cacciopoli theorem can be applied to Low's problem if 
the smaller of the numbers tf and t: is chosen for t*. 
That gives us grounds for formulating the following 
theorem: 

Theorem 4: 

Let (16) and (20) be satsified. Let t* be the 
smaller of the numbers tf and t: defined in 
(19) and (24), respectively. (25) 

Then the algebraic system (12) has one and only one 
solution t:, O!= 1, 2, ... ,N, 11= 1, 2, ... ,00 which satis
fies the inequalities I t: I "" t* X(j!, II). 

Let in addition the condition (9) be satisfied. 

Then the series (4) converge for I Z I = 1 to one and 
only one set of functions H"'(Z), O! = 1, 2, ... ,N, which 
satisfy conditions (3), (B), (C), (D). 

The proof of the theorem was actually made above. 
We have only to add that in the Theorem 2 the first two 
conditions ensure the inequalities j4' j3' j2 ~ jl > 1, which 
are necessary for the deduction of (19). Similarly as in 
Theorem 2 the last condition is necessary to guarantee 
the correspondence between the algebraic and abstract 
version of the problem. The proof of the last assertion 
of Theorem 4 follows immediately from Remark 1 to 
Theorem 1. 

As can be proved, Theorem 3 guarantees not only the 
existence but also the uniqueness of solutions to a prob
lem (A), (B), (C), (D) corresponding to the Chew and 
Low equation and as we conjecture to that of Shirkov. As 
in Sec. III, in the latter case we must replace f(x) by 
f (x )e-kX, k - 0, and then put k = 0 in the solution. 

If we are interested in the case when H(Z) is analytiC 
in a circular ring, then Theorem 4 must be replaced by 
the theorem 

Theorem 5: Let (16), (21), and (25) be satisfied. Then 
the algebraic system (12) has at least one solution h~, 
O!= 1, 2, ... ,N; v= 1,2, ... ,00 such that h~ =0[1/1 vi ill, 
jl> 1. If in addition the condition (9) is satisfied, then 
the series (4) converge for 1 "" I Z I > Rf to one and only 
one set of functions H"'(Z), O! = 1, 2, ... ,N which satisfy 
the conditions (B), (C), (D) and are analytic in the re
gion D~(R:= 1 > IZ I >R~ > 0). 
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The proof of Theorem 5 is analogous to that of 
Theorem 4, except at a few points where, as in Theorem 
3, the function (Rf}-I nl is introduced instead of the func
tion X(j3' n). 

V. CONCLUSION 

In this paper a generalization of Low's integral equa
tion (1) was studied. The generalized problem under the 
name of Low's problem in Sec. II, is formulated as the 
problem (A), (B), (C), (D) and the algebraic problem 
(5). The conditions under which the two formulations 
are equivalent are specified by Theorem 1. The con~ 
ditions for existence and uniqueness of solutions to 
Low's problem in its abstract and algebraic formulations 
are given in Theorems 2,3, 4,and 5. 

The results obtained in this paper partially coincide 
with the results in Refs. 7-11. In some cases they are 
more general and in others less so. 

So, for example, the methodS developed in Refs. 7 
and 8 can be used for the examination of a kind of Low's 
problem which is more general than the integral equa
tion (1) but less so than Low's problem considered here. 
The generalization consists in the replacement in (1) of 
the inhomogeneous term 'A",/z, by the series 

'A", + £R?n. 
z n=2 zn 

In this case h"'(z) could have not only a single pole at 
z = ° but also Singularities in a larger domain. More 
precisely the region which is the point Z = ° in the case 
of equation (1) after the generalization of (1) would be
come a circle C with the center z = ° and radius r< 1. 
Circles C with r> 1 are excluded on the following 
ground: When C has a radius r> 1, the coefficients R':n 
would contain information of the unknowns h"'(z). This 
would complicate the problem in the case r> 1 to such 
an extent that the treatment of the integral equation 
would not be possible by Simple generalization of the 
methods in Refs. 7 and 8. For the algebraic method 
which was developed here sr is not restricted in such a 
way-it can, in principle, coincide even with the cut 
plane z. 

There are, however, other problems where the ap
proach of the integral equations is more efficient. These 
are, for example, the proof of the existence of resonant 
solutions and the proof of their multiplicity. Although in 
both cases the investigation on the basis of the algebraic 
system is possible, it would give less interesting results 
than the direct analYSis of the integral equations. 

Interesting results may be expected in studying the 
beha vior of the solution of Low's problem for cp - ± t1T. 
Investigations in this direction are now in progress. 
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"Symmetric cell materials" and "asymmetric cell materials" were defined by Miller in connection 
with the physical properties (such as the effective dielectric constant) of two-phase solid mixtures. It 
is shown here that while the "symmetric cell material" is self-consistent, the "asymmetric cell 
material" is not: The postulated three-point probabilities do not add up to the correct one-point 
probabilities. A self-consistent generalization of the "symmetric cell material", based on the 
requirement that a certain integral must reduce to an integral over a finite region, is developed, and 
one construction procedure for producing such a material is described. 

1. INTRODUCTION 

In a study of the physical properties of two-phase 
solid mixtures, Miller1•Z introduced the concept of a 
"symmetric cell material". For such a material, the 
upper and lower bounds3 to such quantities as the effec
tive dielectric constant are somewhat closer than for a 
general two-phase mixture. The symmetric cell mate
rial can be defined most simply by describing a mathe
matical procedure for constructing one: first divide the 
space by some random procedure into statistically 
equivalent4 cells, then assign each cell randomly and in
dependently to material A or to material B with proba
bilities p and q = 1 - p, respectively. It follows that, 
given that two points are in different cells, each of the 
two pOints has, independently of the other, probability 
p of being in material A and probability q of being in 
material B. 

Miller1 also introduced the concept of an "asymmetric 
cell material. " For it, the cells of one component ma
terial are not statistically equivalent (as regards shape 
or size) to the cells of the other. Consequently some 
other definition than that given above is necessary. 
Miller specifies that "the material property E of a cell 
is statistically independent of the material property of 
any other cell. " It is not obvious that the postulated 
statistical independence is compatible with distinguish
ability of the two types of cell, or that Miller's recipes 
for constructing such a material will indeed lead to one 
that satisfies his definition. To get a clear idea of what 
is meant, one must examine the specific three-point 
probabilities postUlated. 

In Sec. 2 it will be shown that Miller's "asymmetric 
cell material" is in fact not self-consistent: The three
point probabilities do not add up to the correct one-point 
probabilities. In Sec. 3 a self-consistent generalization 
of the "symmetric cell material" will be developed. The 
property required of it is that, like the "symmetric cell 
material," it must reduce a certain integral to an in
tegral over a finite region; this is the property that leads 
to the improvement in upper and lower bounds mentioned 
earlier. 

In Sec. 4 a specific model, based on a definite con
struction procedure, will be described and will be shown 
to possess the general properties derived in Sec. 3. In 
Sec. 5 some conclusions will be drawn. 

2. MILLER'S "ASYMMETRIC CELL MATERIAL" 

In this section Miller's notation will be used, with 
some small modifications. A point chosen at random 

has probability cf> of being in material A (Miller's ma
terial 1) and probability 1 - cf> of being in material B (his 
material 2). For three points 1, 2, 3, with position 
vectors rl> r z, r g, the various joint and conditional 
probabilities, because of the assumed statistical homo
geneity, depend only on the two relative poSition vectors 
r;'r2 -r1 and s=rg-r1 (Miilertherefore takes r1=O); 
and becauseof the assumed statistical isotropy, these 
probabilities are invariant to a rigid rotation of the 
triangle formed by the three pOints. They may therefore 
be taken to be functions of r = I r I, s = I s I, and a third 
variable. We shall choose as this third variable the 
third side of the triangle, t= I rZ31 = r r3 - ral = Is - rl 
(see Fig. 1). 

The variables r, s, and t are in a certain sense not 
completely independent, since they are subject to tri
angular inequalities. For our purposes, however, the 
important property of r, 8, and t is that whatever val
ues they have, the value of one of them can always be 
changed (though perhaps in only one direction) without 
changing the others; for example, t can be changed at 
constant rand 8 by rotating r or s about point 1. From 
the independence of r, 8, and t in this sense, it follows 
that if [(r) =g(8), then [(r) = const; for [(r) is not af
fected by a change of s, g(s) is not affected by a change 
of r, and therefore the common value of these two quan
tities is not affected by a change of r or of s. 

We shall encounter three types of function, for which 
certain abbreviated notations are convenient. (In the 
following illustrations, the letters I, v, and u may be 
replaced by other letters.) 

(1) A function/(r) of the distance r between pOints 1 
and 2. Our abbreviated notation will be 

1=1 (r), l'E[(8), l"E/(t). (2.1) 

(2) A function v(r; 8, t) of the three distances r, 8, and 
t, invariant to an interchange of 8 and t but not to an in
terchange of rand 8. We shall use the abbreviated 
notation 

v(r; ) =v(r; 8, t) = v(r; t, s) 

and the still more abbreviated notation 

vEv(r;), V'EV(8;), V"EV(t;). 

(2.2) 

(2.3) 

(3) A function u(r, 8, t) invariant to all permutations 
of r, s, and t: 

u Eu(r,) Eu(r, s, t) =u(r, t, s) =u(s, r, t). (2.4) 

The primed notation is that used by Miller; the more 
explicit notation 1 (r), v(r;), u (r, ) is helpful in applica-
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3 
S =Th 
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FIG. 1. Notation for describing the relative positions of three 
points 1, 2, 3. In most of this article, the independent varia
bles chosen are r, s, and t. 

tions of the theorem of the preceding paragraph. 

Miller's three-point probabilities are listed and de
fined in Table I. The possible states are listed in col
umn 1, where, for example, an entry A in the subcol
umn headed 1 means that point 1 is in material A, and 
brackets enclose pOints that are in the same cell. (The 
brackets in "A] B [A" are to be interpreted as enclosing 
the two A's. Two points in the same cell are automati
cally in the same material.) The corresponding probabil
ities are listed in column 2. They are expressed by 
Miller in terms of the conditional probabilities defined 
in columns 3 and 4. Here column 3 shows the condition 
under which the conditional probability in column 4 is 
defined; the state of which it is the conditional probabil
ity is the state or group of states in column 1. Thus g1 
is t,he conditional probability that all three pOints are in 
a single A cell, given that point 1 is in A; the condition 
can equally be that point 2 or point 3 is in A, but for 
Simplicity these alternates have not been indicated in the 
table. Again, h1 is the conditional probability that points 
1 and 2 are in a single A cell, given that point 1 (or 
equivalently pOint 2) is in A. The other g and the other 
h's are defined similarly. Finally, Z is the probability 
that the three points are in three separate cells; its val
ue, in order that the total probability may be unity, is 

Z= 1- cf>(g1 +h1 +h~ +hn - (l-4>)(gz +hz+h~ +h:). 

(2.5) 

From the forms of the probabilities in column 2, it 
is evident that the "statistical independence" of the 
definition has been interpreted as follows: The condi
tional probability that point 1 is in A or B, given that 
points 2 and 3 are not in the same cell with it, is inde
pendent of whether the other pOints are in a single cell 
or in two different cells and of which materials they are 
in, and is 4> for A, 1 - 4> for B. Thus the probability of 
B [AA] has been found by multiplying the probability that 
points 2 and 3 are in a single A cell, namely 4>hr, by 
1- 4>. 

Is the independence thus postulated consistent with the 
assumption of different functions g1 and gz, etc., for the 
two materials? 

The test of the consistency of a set of three-point 
probabilities is that they must give the correct one-point 
probabilities; it is not sufficient that they give the cor-
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reet total probability 1. In this case the probability that 
anyone point shall be in A must be 4>; and in B, 1 - 4>. 

On adding all the probabilities for states in which 
point 1 is in A and equating the sum to 4>, we get 

4>[g1+h1+h~+4>hr +(l-4»h:+Z]=4>, (2.6) 

whence (except in the trivial case 4> = 0) 

g1 +h1 +h; + 4>h~ + (l-4»h: + Z= 1. (2.7) 

Similarly we get for point 2 

g1 + h1 + h~ + 4>h~ + (1 - 4> )h~ + Z = 1. (2.8) 

Subtraction gives 

(1 -4>)(h~ -hr + h: -h~) = 0, (2.9) 

whence 

(2.10) 

Now the conditional probability that 1 and 2 are both 
in the same A cell, given that 1 is in A, is 

(2. 11) 

and is a function of r only. Hence we may (as Miller did) 
express the asymmetric function h1(r; ) in terms of the 
symmetric function g1(r, ) and the function 11(r) of a 
single variable: 

(2. 12) 

Similarly hz = fz - gz; also h; = I{ - g1> hr = I{' - g1> 
h~ = I; - gz, h: = t!: - gz· With these substitutions, (2. 10) 
becomes 

I{ -I; = I{' -It (2. 13) 

or 

(2.14) 

By the theorem of the second paragraph of this sec
tion' it follows from Eq. (2.14) that/1(s) -/z(s)=const. 
We suppose that the cells are of finite size, or at least 
have a distribution of sizes such that the probability of 
maximum linear cell dimension L approaches zero as 
L_oo; then/1(s) and/z(s) approach zero as s_oo, and 
therefore the constant is zero, and 

(2.15) 

Returning now to (2.7) and inserting (2.12) and (2.15), 
we get 

(2.16) 

and hence 

(2. 17) 

From (2. 15) and (2. 17) it follows that hz = h 1> etc. Thus 
all the functions are the same for materials A and B. 
That is, the three -pOint probabilities postulated by 
Miller are consistent only if the material is symmetric; 
if g 1'" gz and so on, they do not add up to the correct one
point probabilities. 

The same result can be obtained by setting the total 
proability that a point is in B equal to 1 - 4>. This con
dition and the one used are not independent, because 
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TABLE 1. Three-point probabilities and conditional probabili-
ties according to Miller. 

State Probability Condition Conditional Probability 
1 2 3 123 

[A A Al epg1 A g1=g1(r,) 
[B B BI (1- CP)g2 B g2=g2(r,) 

[A AJ A cp2h1 } A h1=h1(r;) [A Al B CP(1- CP)h1 

[B BI A CP(1- cp)h2 } B h2 =h2(r;) [B BI B (1- CP)2h2 

Al A [A cp2hi } A hi =h1(s;) Al B [A CP(1- cp)hi 
BI A [B CP(1 - CP) 112 } B 112 = h2(s;) BI B [B (1- cp)2hi 

A [A Al cp2hj } A hj=h1(t;) B [A Al CP(1- CP)hj 
A IB BI CP(1 - CP) hi } B 112 = h2(t;) B [B BJ (1- CP)2hi 

A A A cp3Z 
A A B cp2(1_ cp)Z 
A B A cp2(1_ cp)Z 

Z=Z(r,) 
A B B cp(1- cp)2 Z 

=1- CP(g1 +h1 +hi +hj} 
B A A CP2(1_ cp)z 

- (1- CP)(g2 +h2 + hi +112 
B A B cp(l- cp)2Z 
B B A CP(1- cp)2Z 
B B B (1- cp)3Z 

Z has been given a value that insures that the sum of the 
two probabilities in question is unity. 

It might seem that we could rescue the model by inter
preting the ¢ of the three-point probabilities as a quan
tity (perhaps a function of r, s, and t) different from the 
one -point probability (or volume fraction) p. But then 
the probability that pOints 1 and 2 are both in the same 
A cell becomes ¢(gl +h1) = ¢!t= ¢(r, s, t)fl(r). Since this 
must be a function only of r, ¢ must be independent of 
sand t. By a similar argument for pOints 1 and 3, ¢ 
must be independent of rand t. Hence ¢ must be a con
stant, equal to its value at r = s = t = o(). But there the 
only states with nonvanishing probabilities are the last 
eight in Table I, whose probabilities are clearly p3, 
p2(1-p), etc.; the g's and h's are all zero, Z = 1, and 
we have ¢3=p3, ¢2(1-¢)=p2(1-p), etc., i.e. ¢=p. 
Thus we return to the original model. 

3. A SELF-CONSISTENT ASYMMETRIC 
GENERALIZATION OF THE "SYMMETRIC 
CELL MATERIAL" 

Since the "asymmetric cell material" as defined by 
Miller is not self-conSistent, the asymmetric generali
zation of the "symmetric cell material" must take some 
other form. Such a generalization is the topic of this 
section. 

We define "cells" as nonoverlapping regions, each of 
which contains only one of the individually homogeneous 
component materials. Since a cell as thus defined can 
always be divided into smaller cells, the division into 
cells is not unique. It could be made so by requiring that 
no two cells of the same material have a surface of con
tact, but for our purposes such a requirement would not 
be helpful. We shall suppose merely that the division has 
been made in some definite way, and that the cells are 
of finite size (or at least have a size distribution such 
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that the probability of maximum dimension L approaches 
zero as L becomes infinite). 

According to this definition, all two-phase mixtures 
may be considered to be composed of cells. In Miller's 
,. symmetric cell material, " the distribution of the two 
materials among the cells is statistically independent of 
the distribution of any other property that distinguishes 
different cells; in consequence, certain integrals over 
the specimen or over space reduce to integrals over a 
cell. The generalization underti:lken here is a generali
zation of this property to a less restricted class of two
phase materials. Accordingly, we shall first consider 
an arbitrary two-phase mixture, and shall find the gen
eral form that the one-, two-, and three-point probabil
ities must take; we shall then determine what conditions 
may be imposed in order that the material may possess 
the desired property. 

In this section, we shall use joint probabilities in
stead of conditional probabilities and shall use the nota
tion p and q instead of ¢ and 1 - ¢. 

We conSider first the one-pOint probabilities. These 
are very simple: probability p that a point r picked at 
random is in material A, probability q that it is in B; in 
order that the total probability may be unity, p and q 
must satisfy the constraint 

p+q=1. (3.1) 

Since we assume statistical homogeneity, p and q are 
constants, independent of r. 

We conSider next the two-pOint probabilities. These 
are shown in Table II for pOints 1 and 2. We have used 
a single symbol R for the probability that 1 is in A and 
2 in B and for the probability that 1 is in Band 2 in A. 
Their equality follows from the postulated statistical 
homogeneity and isotropy; these enable us, without 
alteration of the probability, to translate points 1 and 2 
rigidly until 1 is where 2 was, and then to rotate r12 
rigidly about the new position of 1 until 2 is where 1 was. 
The homogeneity and isotropy also insure that all the 
probabilities listed are functions of r only, and not of rl 
and rz separately or of the direction of r12' The corre
sponding probabilities for pOints 1 and 3 are p' = P(s), 
etc.; for points 2 and 3, P" = P(t), etc. 

These probabilities must satisfy the constraints: total 
probability that 1 is in A::= p, total probability that 1 is 
in B = q; and similarly for point 2. Explicitly, 

P+P' +R=p, 

Q+Q*+R=q. 

TABLE II. Most general two-point probabilities. 

State Probability Value at r-O 
1 2 

[A Al P=P(r) P 
[B BI Q= Q(r) q 

A A P"'=P"'(r) 0 
A B R=R(r) 0 
B A R=R(r) 0 
B B Q"'= Q*(r) 0 

(3.2) 

(3.3) 

Value at r 00 

0 
0 

p2 
pq , 
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TABLE III. Most general three-point probabilities. 

State Probability 
1 2 3 

[A A Al SA "" SA(r,) 
[B B BI SB""SB(r,) 

[A Al A TAA = TAA(r:) 
[A Al B TAB = TAB(r:) 
[B BI A TBA "" TBA(rj) 
[B BI B TBB = TBB(r:) 

Al A [A TiA = TAA(s:) 
Al B [A TAB = TAB(S:) 
BI A [B 'T1A=TBA(sj) 
BI B [B TBB = TBB(S;) 

A LA Al T1A = TAA(t;) 
B [A Al TIB= TAB(t;) 
A [B BI ~¥= TBA(t;) 
B [B BI TBB = TBB(t:) 

A A A UAAA = UAAA(r,) 
A A B UAAB = UAAB(r:) 
A B A UABA = UMB "" UAAB(s;) 
A B B UABB "" U;BA "" U BBA (t:) 
B A A UBAA "" U1AB"" UAAB~hl 
B A B UBAB "" UBBA "" UBBA (s;) 
B B A UBBA ;; UBBA(r;) 
B B B UBBB "" UBBB(r,) 

These enable us to express two of the two -point proba
bilities in terms of the other three. 

The third and fourth columns of Table II show the 
limiting values of P, Q, etc. at r = 0 and at r == 00. At 
r= 0, the probability that one point is in A or B is p or 
q, respectively, and the other is then certain to be in 
the same cell and in the same material. At r = "", the 
two pOints have zero -probability of being in the same 
cell, and their material probabilities are independent. 
[If the A cells have a maximum linear dimension LA and 
the B cells a maximum linear dimension L B, then P van
ishes for r > LA and Q for r> LB' When r> LA and L B, 
both P and Q vanish, and the constraints (3.2) and (3.3) 
enable us to express P* and Q* in terms of R, though 
not to replace P* by p2 and so on. ] 

Finally, we consider the three -pOint probabilities. 
These are shown in Table III. The first column is the 
same as in Table I. The second column lists the sym
boIs that will be used for the probabilities, in the ab
breviated notation SA, T AA, ~A' etc. and in the less 
abbreviated notation SA (r,), TAA (r;), TAA (8;), etc. Al
though there are 22 different states, the probabilities 
can be expressed by means of only 10 different functions 
SA, SB, T AA , TAB, T BA , T BB , UAAA , UBBB, UAAB, UBBA 
by permuting the arguments. Among the probabilities of 
states with the paints in three separate cells, UAAA and 
U BBB are symmetric in all three variables, whereas 
UAAB and UBBA are symmetric only in 8 and t. 

The values of the ten different functions in limiting 
cases are shown in Table IV. These are based on the 
principles (1) that when two pOints coincide, they are 
certain to be in the same cell and the same material; 
and (2) that when one point is infinitely distant from the 
other two points, its probabilities and theirs are inde
pendent. Under the conditions listed, the three-point 
probabilities can be expressed simply in terms of the 
two-point. Such cases as r=8=O and r=8="", t=O or 
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00 need not be listed specially; they follow from the en
tries in Table IV by use of the further limiting values in 
Table II. The limiting values of such functions as ~B 
can be found by appropriate permutation of the variables 
r, s, t. 

The probabilities in Table III are subject to the con
straints that they must add up to the correct two -pOint 
probabilities of Table II. Thus the sum of the probabil
ities of all states with points 1 and 2 in a single A cell, 
namely SA + TAA + TAB, must equal the probability P that 
points 1 and 2 are in a single A cell: SA (r, ) + TAA (r; ) 
+ T AB(r; ) = P(r). By carrying out this addition for each 
state of pOints 1 and 2, we get the following six 
constraints: 

SA + TAA +TAB=P, 

SB + TBA +TBB = Q, 

~A + T1A + UAAA + UAAB=P*, 

T~B + T~B + UBBB + UBBA == Q*, 

~B + T~A + U~AB + U~BA =R, 

T~A + T1B + U1AB + U~BA =R. 

(3.4) 

(3.5) 

(3.6) 

The last two of these are not independent; one can be ob
tained from the other by interchanging the arguments 8 

and t. The constraints obtained by considering the prob
abilities for pOints 1 and 3, and for points 2 and 3, need 
not be written separately; they can be obtained from the 
above by permutation of arguments. 

We can solve Eqs. (3.4) for T AS and TBA' and Eqs. 
(3.5) for UAAB and UBBA• Substitution of appropriately 
permuted forms of the results in either of Eqs. (3.6) 
then gives a constraint which, by use of the two-point 
constraints (3.2) and (3.3), can be Simplified to 

SA +SB +(TAA +TAA +T1A) + (TBB +T~B +T;B) 

+ UAAA + UBBB = 1 -(R +R' +R"). 
(3.7) 

In this relation between three-point and two-point func
tions, those functions that are not themselves symmetric 
in r, 8, and t occur in symmetric combinations such as 
R +Ir +R". 

If the functions that appear in this constraint are 
assigned arbitrary values consistent with it and with 
the limiting values at 0 and 00, the other three- and 
two-point functions can be found from the other con-

TABLE IV. Values of the three-point probabilities in limiting 
cases. 

Function Value at Value at Value at Value at 
r=O, t=O, r~s=CO, s=t=co, 
s=t s=r t finite r finite 

SA(r,) PIs) PIn ° 0 
SB(r,) Q(s) Q(r) 0 0 

TAA(r:) P*(s) 0 0 P(r)p 
TAB(r:) R(s) ° 0 P(r)q 
TBA(r:) R(s) 0 0 Q(r)p 

TBB(r:) Q*(s) 0 0 Q(r)q 

UAAA(r,) 0 ° pP*(t) P*(r)p 
UAAB(r;) 0 0 pR(tj P*(r)q 
UBBA(r:) 0 0 qR(t) Q*(np 

UBBB(r,) 0 0 qQ*(t) Q*(r)q 
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straints. The assigned values must also, of course, be 
consistent with the general requirement that a probabil
ity may not be less than 0 or greater than 1. 

The constraint (3.7) can be put into a physically more 
illuminating form. The probability that all three points 
are in material A, without regard to their distribution 
among cells, is 

(3.8) 

Similarly, the probability that all three pOints are in 
material B is 

q~~~=SB +TBB +T~B +T;;B + UBBB · (3.9) 

The constraint (3. 7) may therefore be written 

p~~~+q~~~=l-(R+R'+R"). (3.10) 

Since Eq. (3.7) contains six three-point functions SA, 
SB' T AA, T BB , UAAA, and UBBB and one two-point func
tion R, and since the only other constraints on these 
functions are the conditions at 0 and 00 and the limitation 
to the interval (0,1), it is clear that there is wide lati
tude in choosing them. Our aim, however, is to find a 
simple generalization of the "symmetric cell material" . 

The deSirable property of the "symmetric cell ma
terial" is that it reduces the integralS 

(3.11) 

to an integral over a single cell, in some cases simply 
related to the cell geometry. In Eq. (3.11), €j=€f -E, 
where Ej is the dielectric constant (or other material con
stant) at point i and E is the volume or ensemble average 
of Ej ; < ) denotes an ensemble average. For a two-phase 
mixture, Ej=EA when point i is inA and =EB when it is 
in B; €=PEA +qEB ; and if 

then 

'E'E'€,) _Ii's{P(S) _p[p(2) +p(2) +p(2)] + 2fiS} 
~ 1 2 S - 12S 12 lS 2S 'Y, 

(3.12) 

(3.13) 

where pm is as before and p~~) is the probability that 
pOints 1 and 2 are both in material A.· From Table II 
and Eq. (3.2), 

pg>=P+P*=p-R, (3.14) 

and the integral I reduces to 

1= ~;s (li~ f f~~~~s r;~s~~~3 dvadv2 _tp2q ). (3.15) 

The term - t p2'q is contributed by the term containing 
p~:) in (3.13) (see Appendix). 

In general, the integral in (3.15) extends over all 
space; for the "symmetric cell material", however 
(Table I with g2 = gl = g, etc.), in Miller's notation, 

pm = cpg + cp2(h +h' +h") + cp3Z 

= cpg + cp2(h +h' +h") + cp3(1 - g- h -h' -h"). 

(3.16) 

Since h can be replaced by f - g, pm can be expressed 
in terms of two-point functions (whose contributions to 
I can be intergrated in closed form) and the single three-
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point function g, which vanishes when anyone of r, s, 
and t exceeds the maximum linear dimension L of a cell. 
The same result can be obtained by using qg~ instead 
of pm. 

Our aim is to accomplish, for an asymmetric mate
rial, a similar reduction of the region of integration to 
a finite region. 

In the formulas (3.8) and (3.9) for pm and qm, the 
only terms that have the deSired property of vanishing 
when anyone of r, s, and t exceeds LA and LB are the 
terms SA and SB' Since the constraint (3.7) and the con
ditions at 0 and"" leave us considerable freedom in the 
choice of the functions, let us try to impose on the func
tions a further constraint that will reduce pm to an ex
pression containing only SA and SB and the two-point 
functions R, R', and R". Such a constraint is 

TAA +TM +T1A +UAAA=klSA +k2SB 

+ks(R +R' +R") +ko, (3.17) 

where the k's are constants to be determined. If (3.17) 
is satisfied, it follows from (3.7) that an analogous 
equation of the form 

T BB + T~B+ T~B+ UBBB=llSA +l2S B 

+Za(R+R'+R")+lo (3.18) 

must also be satisfied. To keep the calculation sym
metric, we shall impose both (3.17) and (3.18) and shall 
later determine the relations between the k's and the l's 
by imposing (3.7). We shall call the constraints (3.17) 
and (3.18) imposed constraints and the earlier ones 
natural constraints. 

The left member of (3.17) or (3.18) is the probabil
ity that the three points are all in A or in B, respective
ly, but not all in the same cell. 

Equations (3.17) and (3.18) take the following forms 
in limiting cases: 

At r=O, s=t: 

.P*(s) = k1P(S) + k2 Q(s) + 2kaR(s) + ko, 

Q* (s) = llP(S) + l2Q(S) + 2laR(s) + lo; 

at r=s= "", t finite: 

pP(t) + pp* (t) = ka[R(t) + 2,pq] + ko, 

qQ(t) + qQ*(t) =l3[R(t) + 2pq] + lo. 

(3.19) 

(3.20) 

(The forms at t= 0, etc., can be found by permuting the 
variables. ) These in turn take the following forms in 
further limiting cases: 

At argument 0: 

O=ktP+k2q+ko, 

o =ltP + l2q + lo, 

p2=ka' 2pq +ko, 

q2 =13' 2pq =lo; 

at argument 00: 

p2 = 2ka • pq + ko' 

q2= 2la·pq+lo, 

(3.21) 
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p3=k3' 3pq +ko' 

q3=13' 3pq + 10 , 

(3.22) 

These eight equations consist of four involving the k's 
and four involving the l's; in each group, two equations 
are identical. The three independent k equations give 

kjJ + k2q = _p2(1 + 2q), 

k3= -po 

ko=p2(1 + 2q), 

and the three independent I-equations give 

IjJ +12q= -l(l + 2p), 

13=-q, 

lo=q2(1 + 2p). 

(3.23) 

(3.24) 

Once kl and 12 are assigned values, the constants are 
all determined. Equations (3.19) and (3.20) and the two
point constraints (3.2) and (3.3) then enable us to ex
press P, P*, Q, and Q* in terms of R if we so desire. 

On expressing k2 in terms of kl and II in terms of 12, 
substituting the constants in (3.17) and (3.18), and in
serting the results in (3.8) and (3.9), we get 

pm = (1 + kJs A + q-l[ - kjJ - p2(1 + 2q)]SB 

- p(R + R' + R") + p2(1 + 2q), (3.25) 

qm=p-l[ -12q -l(l + 2P)]SA + (1 +12)SB 

-q(R + R' + R") +q2(1 + 2p). (3.26) 

Insertion of these in the natural constraint (3. 10) gives, 
after considerable algebra (in which the relation p + q = 1 
must be frequently used), 

(3.27) 

If Eq. (3.27) is satisfied, our aim is accomplished. 
It can be satisfied by two methods. 

The first method is to set 

SA/P = SB/q =g(r,s, t); 

then SA =pg, SB=qg, and 

k lSA +k2SB= (kjJ +k2q)g= _p2(1 + 2q)g, 

lISA +l2SB= (lIP +l2q)g= _qZ(l + 2p)g, 

(3.28) 

(3.29) 

by (3.23) and (3.24). Only these combinations of the con
stants are physically significant, not kl and kz separate
ly or II and lz separately. By virtue of the other Eqs. 
(3.23) and (3.24), the imposed constraints (3.17) and 
(3.18) become 

TAA + TAA + T~A + UAAA =p2(1 + 2q)(l-g) 

- p (R + R' + R"), 

TBB + T BB + T~B+ UBBB =q2(1 + 2p)(1-g) 

-q(R+R'+R"). 

(3.30) 

(3.31 ) 

That the three-point probabilities should be those of 
Miller's "symmetric cell material" is a sufficient but 
not a necessary condition for satisfaction of (3.30) and 
(3.31); thus we can, if we wish, generalize the "sym
metric" material somewhat by this method. Of more 
interest, however, is the case of a material for which 
SA/P*,SB/q· 
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The second method of satisfying (3.27), available 
when gl =SA/P and g2=SB/q are not equal, is to set 

kjJ -12q = - (p -q)(l + pq). (3.32) 

If kl and l2 are chosen so that this equation is satisfied, 
we find from Eqs. (3.25) and (3.15), with use of (3.14), 
that 

(3. 33) 

where 

(3.34) 

and 

(3.35) 

G -ff 02SB rIa' rl3 d d 
B- 3 3 V3 V 2 • 

OZ20Z3 r 12r 13 

(3.36) 

Alternatively, we can use instead of (3.13) the equiva
lent formula 

(€~€~€;)= - o,3{qm _q[qgl +qgl +q4~'] + 2q3}, (3.37) 

where the q's have the same meaning for material B that 
the p's have for material A. This gives formual (3.33) 
but with 

(3.38) 

The pairs of formulas (3.34) and (3.38) are equivalent 
by virtue of (3.32). 

From Eq. (3.32), we may set 

P(kl + 1 + pq)=q(12 + 1 + pq)=Kpq. (3.39) 

Then 

(3.40) 

and K remains an arbitrary constant, subject only to the 
condition that the resulting probabilities must all lie in 
the interval (0,1). 

The relation of G A and G B to Miller's G1 and G2 is 

GA=161fpGu GB=161fqG2. (3.41) 

4. ILLUSTRATIVE MODEL 

In the previous section, the properties of our compo
site material were defined in a formal manner. In this 
section, it will be shown that such a material can in fact 
be constructed by a straightforward procedure. 

The procedure consists of the following steps: (1) 
Divide the space by some random procedure into statis
tically equivalent cells. (2) ASSign each cell randomly 
and independently to material A or to material B with 
probabilities ¢ and 1- ¢, respectively (we use the sym
bol ¢ at this stage, reserving the symbols p and q for 
the ultimate one-point probabilities). (3) Divide each A 
cell independently, by some random process, into two 
subcells. (4) In each of the original A cells independent
ly, select one of the subcells by a random and unbiased 
method and change its material to B. The random pro
cesses used must guarantee statistical isotropy and 
homogeneity. 
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TABLE V. Two-point probabilities for illustrative model. 

state Probability Number of states Number of states 
1 2 after step (3) after step (4) 

[(. 0)] t = tV) 2 2+1 =3 
[( .) (.)] 71 = 71(r) 2 2+1 =3 
[( .)] [( o)] 9=9(r) 4 4+2+2+1 =9 

8 15 

The calculation of probabilities is facilitated by mod
ifying the construction procedure to the follOwing equiva
lent one: (1) Divide the space by some random procedure 
into statistically equivalent cells. (2) Divide every cell 
independently, by some random process, into two sub
cells. (3) Assign each of the original cells randomly and 
independently to material A or to material B with prob
abilities cp and 1 - cp respectively. (4) In each of the A 
cells independently, select one of the sybceUs by a ran
dom and unbiased method and change its material to B. 
(5) In each of the B cells, remove the boundaries be
tween the subcells. 

After step (2) of the modified procedure, the two
point probabilities are those shown in Table V, and the 
three-point probabilities are those shown in Table VI. 5 

Brackets indicate cells and parentheses subcells: thus 
[(0 0 )][(. )] means that pOints 1 and 2 are in the same sub
cell of one cell and point 3 is in a different cell, where
as [(0)(')][(')] means that points 1 and 2 are in different 
subcells of one cell and point 3 is in a different cell. 
The. two-point functions are shown only for points 1 and 
2; for points 1 and 3 we write t' = t;(s), etc. , and for 
points 2 and 3 t"=t(t), etc. The two-point probabilities 
are subject to the constant 

and the three-point probabilities to the constraints 

u+v+w=t, 

v' +v" +x=1), 

w'+w"+x'+x"+y=B 

(4.1) 

(4.2) 

and their permutations; the constraints (4.2) are ob
tained by equating the entries in Table V to appropriate 
sums of entries in Table VI. If we choose as indepen
dent functions t, 1), u, and v, we can solve Eqs. (4.1) 
and (4.2) and their permutations for the other functions; 
this gives 

B=1-t-1), 

w=t-u-v, (4.3) 
x=T/ -v' -v", 

y = 1 - (t + -) - (1) + -) + 2u + 2(v +-) 

and permutations of these equations. Here we have ab
breviated the symmetric sums t + t' + t", etc. , to t + -, 
etc. 

The third column in Tables V and VI shows the number 
of states after step (3). In Table V, for example, the 
state [(00)] becomes, in this step, either [(AA)] or [(BB)], 
but the state [(. )][ (.)] has the four possibilities [(A)][ (A)], 
[(A)][(B)], [(A)][(B)], [(B)][(A)], and [(B)][(B)]. The con
ditional probabilities of these states, given the initial 
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states, are cp and 1-cp in the first example; cpa, cp(l-cp), 
cp(1 - cp), and (1 - cp)2 in the second. 

In step (4) there is a further splitting: thus [(AA)] re
mains unchanged or changes to [(BB)] with probabilities 
t; [(A)][(A)] has the four possibilities [(A)][(A)], [(A)][(B)] , 
[(B)][ (A)], and [(B)][ (B)], each of probability t; [(B)][ (B)] 
remains unchanged with probability 1. The fourth col
umn in Tables V and VI shows the number of states into 
which each of the states enumerated in column 3 splits, 
and the resulting total number of states. Thus in Table 
V, the initial state [( .. )] has become, after step (3), 
either [(AA)] or [(BB)]; after step (4), [(AA)] has re
mained unchanged or changed to [(BB)], with probabil
ities t, and [(BB» has remained unchanged with prob
ability 1; the number of final states is indicated as 
2 + 1 = 3. Initial state [(.)][ (0 )] has bec ome, after step 
(3), [(A)][(A)], [(A)[[(B)], [(B)][(A)], or [(B)][(B)]. After 
step (4), [(A)][ (A)] has become one of the four states 
[(A)][(A)], [(A)][(B)], [(B)][(A)], [(B)][(B)] with probabil
ities t; [(A)][(B)] has become one of the two states 
[(A)][(B)], [(B)][(B)] with probabilities t; [(B)][(A)] has 
become [(B)][(A)] or [(B)][(B)] with probabilities t; and 
[(B)][(B)] has remained unchanged. Hence the entry in 
column 4 is 4 + 2 + 2 + 1 = 9. The last entry in column 4 
of Table VI, 8 + 3.·4 + 3·2 + 1, is short for 
8+4+4+4+2+2+2+1. 

step (5) consists merely of removal of the parentheses 
in B cells. 

The complete two-point table, after step (4) or (5), 
contains 15 rows; the complete three-point table con
tains 93. Since the construction of the tables is 
straightforward, they will not be given here. The prob
ability for each row is found by plultiplying the proba
bilities in Tables V and VI by the two subsequent condi
tional probabilities [steps (3) and (4)]; then the various 
probabilities for each final state must be added together. 
The results, initially expressed in terms of cp, can be 
reexpressed in terms of the final one-point probabilities 
p and q by noting that 

tcp=p, tcp+(1-cp)=q, 1-cp=-(p-q); (4.4) 

it is these combinations and powers of them that occur 
in the formulas. 

TABLE VI. Three-point probabilities for illustrative model. 

state Probabil- Number of Number of states 
1 2 3 ity states after step (4) 

after step (3) 

[( 0 .)] u-= u(r,) 2 2+1 =3 

[(. . ) (.) ] v=v(r;) 2 2+1 =3 
[ .) (.) (0 J v' =v(s;) 2 2+1 =3 
[( .) ( . .)] v" =v(t;} 2 2+1 =3 

[( . o)] [( o)] w=w(r;) 4 4+2+2+1 =9 
o} J [( o)] [( 0 w' =w(S;) 4 4+2+2+1 =9 

[(0)] [(. o) ] w"=w(t;) 4 4+2+2+1 =9 

[(.) (.)] [( 0)] x=x(r;) 4 4+2+2+1 =9 
(.) ] [( .)] [( 0) x' =x(s;) 4 4+2+2+1 =9 

[(.)] [(.) ( .)] x" =x(t;) 4 4+2+2+1 =9 

[( .)] [( .)] [( .)] y=y(r,} 8 8+3·4+3·2+1 =27 

40 93 
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The results of this calculation are as follows: 

P=Pb, 

Q=Pb - (P -q)(b +11), 

P*=p2f:J, 

Q*=lf:J, 

R=P11 +pqf:J; 

SA =pu, 

S B = qu - (p - q)(v + -), 

TAA =p
2
w, 

TAB=PV+pqw, 

TBA =pv + pqw -pep -q)x, 

TBB=lw -q(p -q)x, 

UAAA =p3y , 

U AAB= pZ(x' + x") + p2qy, 

U BBA = pq(x' + x") + pq2y, 

UBBB =q3y . 

(4.5) 

(4.6) 

It may be verified that these functions satisfy the 
natural constraints (3.2), (3.3), (3.4), (3.5), (3.6), and 
(3.7). They also satisfy the imposed constraints (3.17) 
and (3.18), with 

k1 =qZ -1, 

k z= _p2, 

ll=-q2, 

l2 =p2 -1, 

k 3=-p, l3=-q, 

ko=p2(1 + 2q), lo=q2(1 + 2p). 

(4.7) 

The last statement may be proved by expressing each 
member of (3.17) and (3.18) in terms of the independent 
functions 1:, 11, u, and v by means of (4.3); the two mem
bers are equal if and only if the coefficients of corre
sponding functions are equal, and these conditions are 
satisfied if the constants have the values (4. 7). 

The values of the k's and l's are those of Sec. 3, with 
K=l in Eq. (3.40). 

With this model, since p = ~cp, P is limited to the 
range 0", p'" %. To get values of p in the range t to 1, 
we may interchange the roles of the two materials, 
splitting the B cells instead of the A cells. The formu
las can be obtained from the preceding ones by inter
changing A and B, P and q, k1 and lz, k2 and l1' k3 and 
l3' and ko and lo. Equations (4.6) change, but Eqs. (4.7) 
are still valid, so that again K = 1. For p = t the two 
materials are treated alike: to construct the model in 
this special case, one divides the space into cells, di
vides every cell into two subcells, and then in each cell, 
randomly and independently, assigns one subcell to A 
and the other to B. 

Comparison of Eqs. (4.6) with Table I shows distinct 
differences from the probabilities assumed by Miller. 
According to Miller, UAAA : UAAB: UBBA : UBBB =p3: p2q: 

pi : q3; our U AAB and U BBA each contain an extra term 
not present in U AAA and U BBB' According to Miller, 
TAB: TAA=q:P, and T BA : TBB=P:q; our TAB and TBA 
each contain an extra term pv. It is interesting that 
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these differences persist even when p == ~, even though 
in that case SB=SA' T BB= T AA , T BA = TAB' U BBB= UAAA , 
and UBBA == UAAB; that is, even though the material is 
then completely symmetriC. 

This example demonstrates that the type of material 
defined in Sec. 3 is not a mere formal abstraction but 
can in fact be constructed by definite procedures. 

5. DISCUSSION 

The foregoing sections demonstrate that although 
Miller's generalization of his "asymmetric cell mate
rial" is not self-consistent, a self-consistent generali
zation, based on the requirement that a certain integral 
reduce to one over a finite range, is possible. The il
lustrative model of Sec. 4 is a specific realization of 
that generalization. It is subject to this criticism: It 
may owe its success to its having started with material
independent cell probabiliites. There has been no de
monstration that the desired reduction of the integral is 
possible when the construction procedure begins with 
geometrically different processes for forming cells of 
different materials: for example, with the process de
scribed by Miller1

, Sec. 2D, in which spherical A cells 
and aspherical B cells grow from randomly distributed 
seeds. 

To the extent that this generalization succeeds, it 
suggests that two-phase mixtures in which the integra
tion range reduces to a finite one owe that property not 
to the fact that they are "cell materials, " but to the fact 
that their two- and three-point probability functions 
satisfy certain rather special relations. 

APPENDIX: INTEGRATION OF TERMS IN 
I DEPENDENT ON TWO-POINT FUNCTIONS 

Because of the presence of the operator aZ /aZ Zaz3 in 
(3. 11), the only terms in (3. 13) that contribute to I are 
the three-point term 6,3pm and the two-point term 
- 6'3ppJ~). We therefore consider the integral 

(Al) 

The following integration procedure is not the shortest 
(cf. Miller 1 

, Appendix B), but it is straightforward and 
requires no special tricks beyond the usual ones of in
tegral calculus. 

In fixed xyz axes, with center at point 1, let the 
spherical coordinates of point 2 be (r, e, <1»; then 

dvz =r2 sinedrde d<l>. (A2) 

Let x'y'z' axes, with center at point 1, be oriented with 
Euler angles6 <1>, e, 0, so that r 1Z is along z'. In these 
axes, let the spherical coordinates of point 3 be (s, f:J, cp); 
then for given r 1Z 

dv 3=s2 s inf:Jdsdf:Jdcp, (A3) 

where f:J is the angle between r 12 and r 13 in Fig. 1. The 
factor r 1Z ' r13/r132r133 in (Al) is (cosf:J)/rzsz; the factor 
a::r(r23 )/aZ2aZ3 is 

(A4) 
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where 1,= - (16/3)r[j(00) - f(O)]. (A8) 

(A5) 

and 

Z33=Z3 - Z2 = (-x~ sine + z~ cose) - rcos€) 

= s(- sine sin6 cos¢ + cose cos6) - rcose; (A6) 

a subscript t indicates differentiation with respect to t. 
Since the limits (0 to 00 for r and s, 0 to 11" for e and 6, 
o to 211" for q. and ¢) are all independent of the variables, 
the integrations over the six variables chosen can be 
performed in any order. 

The integrations can be carried out as follows: (1) 
Integrate over q., e, and ¢; the result is insertion of a 
factor 8lTa and replacement of z~s by tt 2 • (2) For given 
r and s, change from 8 to t as variable of integration; 
t goes from Ir-sl to r+s. (3) Invert the order of in
tegration over t and s, and carry out the integration 
over s; it goes from I r - tl to r + t, and the result is 
zero when t> r, so that t may be integrated from 0 to r 
rather than from 0 to 00. (4) Invert the order of integra
tion over t and r, and carry out the integration over r; 
the result of this step is 

1,= - ¥r f- [ifu(t) + 2f,(t)]dt. (A7) 
o 

(5) Integrate the first term by parts. If f(t) and f, (t) are 
continuous and if if,(t)-O as t-O or 00, this gives 
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In the application to (3.11), f(r23 ) = -1j13pp~~), so that 
f(OO) = - fJ/3p 3, f(O) = - fJ/3p 2, f(oo) - f(O) = fJ,3p2 q; this leads 
to the last term in (3.15). 

If f(t) and f, (I) are zero for t> R and continuous for 
t<R, and if if,(O-O as t-O, the termf(oo) in (A8) is 
replaced by Rf,(R - 0) + feR - 0). For validity of Eq. (AB) 
in this case, Rf, (R - 0) + feR - 0) must vanish; this will 
be the case if, for example, bothf(t) andf,{t) approach 
zero as t approaches R from below. Throughout the text, 
it has been assumed that one or another of the sets of 
conditions necessary for validity of Eq. (A8) is satis
fied; if this is not so, the results may require reviSion. 

lM.N. Miller, J. Math. Phys. 10, 1988-2004 (1969). 
2M.N. Miller, J. Math. Phys. 10, 2005-2013 (1969). 
3M. Beran, Nuovo Cimento 38, 771-782 (1965). 
'Obviously the statistical properties of boundary cells must 
differ from those of internal cells, since the orientation of 
the boundary imposes geometric constraints. We assume 
throughout that the specimen is so large that the special prop
erties of boundary regions are unimportant. 

5The notation in Tables V and VI differs from that in Tables 
I-Ill in one respect: Brackets have been placed around a 
point that is in a diff~rent cell from the other point or points. 
The purpose is to make explicit the relation of cells to 
subcells. 

6E. T. Whittaker, Analytical Dynamics (Cambridge U. P., 
Cambridge, 1927), 3rd Ed., pp. 9-10. 



                                                                                                                                    

Some unitarity bounds for finite matrices 
G. Mennessier and J. Nuyts· 
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(Received 24 October 1972) 

We study the problem of obtaining the bounds on the modulus of one element of a finite unitary 
matrix once the values of the moduli of a set of other elements are given. The problem is solved in 
simple cases, and indications of more general cases are given. This question is interesting from a 
physical point of view since it leads to direct inequalities between sets of partial waves. It would also 
be useful to extend this kind of results to the continuous matrices where inequalities on cross 
sections could be obtained. 

I. INTRODUCTION 

Unitarity imposes strong restrictions on the S matrix 
elements, but due to its nonlinear character these 
restrictions are usually difficult to obtain. In this arti
cle we have tried to obtain boundS on the modulus of one 
element of S once some set of moduli of other elements 
are known. Only few results have yet been obtained in 
this field where the S matrix is infinite dimensional. 

As a first attempt to explore the problem we have 
focussed our attention on the Simpler case of a finite 
unitary matrix. This, in itself, is already a rather dif
ficult task. We have succeeded in solving it in a few 
cases only. Some of them, we hope, may become 
physically interesting. 

We have restricted ourselves to matrices which are 
symmetrical (i. e., equal to their transpose). Indeed 
time-reversal invariance is probably a good symmetry 
of strong interactions and implies that 

<tout I iln ) = <tIn IS Iii.) = (il / Is 1/1.1) = (i out T 1/1/), (I. 1) 

where the state I aT) is the time-reversed state (spin 
and momenta reversed) of I a). By choosing the basic 
states I a + aT) and i' a - aT) one sees easily that the S 
matrix is symmetrical due to (I. 1). Henceforth we will 
always work in the latter basis. Thus 

S = 5 t (t = transposed). (I. 2) 

II. LAGRANGE FORMULATION OF THE PROBLEM. 
NOTATION 

Let S be a N-dimensional unitary symmetric matrix 
with elements S Ii 

S5+ = 5+ 5 = 1 (+ = Hermitian conjugate) 

S=5 t 

(n.l) 

(n.2) 

The problem we want to solve is to obtain the bounds 
on the modulus of one given element Spq of S once the 
moduli of a set 1 of J-l elements of S ar€ given, 

ajJ=lsul, (i,j)Eg'. (n.3) 

This problem can be formulated by using the method 
of Lagrange multipliers. Let A be the matrix of 
Lagrange multipliers related to the unitarity condition 
(II. 1). It can be chosen to be Hermitian 

A+=A. (II. 4) 

Let E be the complex matrix of Lagrange multipliers 
related to the symmetry c.ondition (11.2). It can be 
chosen to be skewsymmetric. 

(11.5) 

Let finally Y be the real symmetric matrix of Lagrange 
multipliers related to the moduli conditions (II. 3). 
Explicitly 

Y ii = Y 11 real arbitrary for (i, j) E 9' , 
Yj>o=Y.,= 1 for the special element (p, q), 

Y ii = 0 for all other elements. 

(11.6) 

For convenience the set of elements for which Y Ii can be 
nonzero will be denoted by 9 

jJ =9 + (p, q), (11.7) 

then J is the number of elements of g. 

To find the extremal values of I spa" one has to ex
tremize the following action: 

A = Tr(A(S+S - 1)) + Tr(E*(S - st)) + Tr('e;(S* - 5+)) 

+ L: Yu( IS iJI2 - a~i) 
( i,i) 

(* = complex conjugate). 

(11.8) 

Introduce the symmetric matrix X with elements x/ i 

X/j=YijSiJ (Y/ j real), 

X=xt. 

(n.9a) 

(II.9b) 

Note that (n. 9a) is not in the form of a matrix product. 
The derivative of A with respect to sl} or siJ* gives the 
matrix equation 

SA-2E+X=0. 

The symmetrical part of this equation is 

SA+ AtS + 2X=0, 

which in turn implies 

SX+=XS+ 

or equivalently 

S+X=X+S. 

(II. 10) 

(II. 11) 

(n.12a) 

(n.12b) 

The 'E matrix can then be chosen to be zero. Then 

A=-S+X, E=O. (II. 13) 

The crucial step to be performed is to obtain a solution 
of the equations (11.12) and (n. 1-2-3) with the restric
tions imposed by (11.9), namely that Xli and S ii have the 
"same phase", 1. e., they differ by multiplicative real 
numbers. 
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The conditions imposed by the Lagrange method can 
be divided into two classes. 

The first class contains the conditions of symmetry 
and unitarity of 5, of symmetry of X as well as equation 
(II. 12). These four sets of equations are invariant under 
transformations of the form 

X=u3(u t
, 5=U5U t

, (II. 14) 

where U is an arbitrary unitary NXN matrix. 

The second class of conditions contains the restric
tions on the moduli of 5 (II. 3) and the phase condition 
(II. 9). These equations are in general clearly not in
variant under the transformations of equation (II. 14). 
However if one restricts oneself to the special unitary 
matrices which are diagonal 

(11.15) 

The phase and the moduli conditions are also invariant. 
This freedom will be used subsequently since it allows 
to choose some phases arbitrarily. 

It will often be convenient to state our results very 
symmetrically by considering the J-dimensional space 
t spanned by the aiJ= I Sui [(i,jk .9]. Let V be the J
dimensional volume of t defined as follows: a point aij 
«i, j) E.9) belongs to V if, and only if, there exist both 
a system of phases ((J jj 

sij=aijexp(i((Jij)' (i,jkf) 

and a set of complex numbers 

(II. 16) 

(II. 17) 

such that the full 5 matrix is symmetrical and unitary. 
In this language our problem is equivalent to finding the 
(J-l)-dimensional surface !3 which is the boundary of 
volume V. As will become clear later, this surface !3 
will often be composed of several different smooth 
pieces which intersect each other on lower dimensional 
surfaces. 

It will be useful to subdivide the matrices X, 5, ... 
into submatrices characterized by partitions {nj} of N. 
USing upper indices to specify those submatrices, we 
write for example 

XU X12 X 13 

X21 X22 X23 

x~~' ~,.} X 31 X 32 X 33 (II. 18) 
m 1 ,m2 ,·· • 

where XU has dimension (n1 Xm 1 ), X12 dimension (n1 

Xm 2 ), andX iJ dimension (njXm j ). 

(II. 19) 

When nj = m i' only one set of indices will be used, 
X(n1 , n2 , ••• ). In the next section the case in which all 
X(m, n,p) except X12 is zero will be treated explicitly. 

J. Math. Phys., Vol. 15, No.9, September 1974 

1526 

III. FIRST CASE 

A. Presentation of the problem 

Let all matrices involved in the problem have a de
composition (m, n,p). In particular 

S(m, n, p) ~~~', ;' ~~ (III. 1) 

\~l3t 523 t 53J 
The problem we shall try to solve explicitely in this 

section is to obtain the bounds on the modulus of one 
element of 512 once all the remaining moduli of 512 are 
given and all the other elements of S are completely 
arbitrary or unknown. 

According to (II. 6) and (11.9) the general form of X is 

(

0 X12 ~ 
X(m, n,p)= X12t 0 0, 

000 

(III. 2) 

which means that the set 9- of elements (i, j) for which 
y may be nonzero is given by 

9-={(i,j)}:l~i~m, m+l~j~m+n. (III. 3) 

B. Solution of the first-class conditions 

We now present the solution of the first class of con
ditions. Since we have in mind the second part of the 
problem it is useful to restrict ourselves to the special 
transformations (11.14), 

U(m, n,p) = (:oU ;22 :\, 

o U31 
(III. 4) 

which have the nice property to leave the set J (X12 *0) 
globally invariant. As the detailed proof of the re
sulting form of X12 and 512 is rather involved, we have 
deferred it to Appendix B. The relevant results only 
will be given here. 

To be definite let us take n ?- m. The matrices 3(12 and 
812 with m lines and n columns can be "pseudodiago
nalized", 1. e., their first m columns form a square 
diagonal matrix while their (n - m) last columns are 
identically zero. The diagonal elements of X12(Xj) are 
real. The diagonal elements of S'12(Sj) are the real posi
tive square roots of the real positive eigenvalues of the 
matrix (512 512+). 

It is easy to see that the volume V in the J = nm-di
mensional space t defined in Sec. II can then be char
acterized by the following requirement: a point aiJ be
longs to V if, and only if, there exists a system of 
phases ((Jij 

st~ = aij exp(i((Jij) (III. 5) 

such that all the eigenvalues of 512 512
+ are smaller than 

or equal to one: 

s~ ~ 1. (III. 6) 

Thus all diagonal elements of S'12 must be larger than or 
equal to zero, and smaller than or equal to one. If 512 
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defined by (III. 5) satisfies (III. 6), it is clear that the 
matrix 

S/12 =:\ S12 (0 "":\ "" 1) 

leads to eigenvalues 

Thus 

(III. 7) 

(lll. 8) 

Proposition 0: If ali is a point of V then :\a li (0"":\ "" 1) 
belongs also to V. 

It is also shown in Appendix B that the x I and the s i 
are correlated in the following manner: for the diagonal 
elements of 512 which are equal to one the corresponding 
values of X12 are arbitrary. For aU the diagonal ele
ments of 512 which have the common eigenvalue s 
(0 < S < 1) the values of X12 are either zero or appear by 
pairs of opposite signs. Finally, for the elements of 
512 which are zero the corresponding values of X12 are 
again arbitrary. Explicitly 

Proposition 1: The most general solution of (II. 1), 
(ll. 2), (ll.9b), (II. 12), and (II. 14) for X12 and S12 is 
S12(n1, n2, n2, n~, n3, •••• ;n - m) 

n1 n2 n2 n; n3 '" n-m 

S1 

° 
... n-m 

(llI.9b) 

° 
where the blocks labelled 1, 1> S2 > 0, 0, ... ;X1' x2 ;to, 
. .. are proportional to the unit matrix of the corres
ponding dimension (ni or n'l) with coefficient 
1, S2' 0, ... ;xl' X 2 , ••• The unitary matrices U11 (m x m) 
and U22(nXn) are arbitrary. 

C. A set of solutions of the second-class conditions 

1. Generalities 

We now turn to the problem of imposing the restric
tions (II. 3) on the moduli of the elements of S12 and the 
phase conditions (II. 9a) between S12 and X12. A matrix 
which satisfies these conditions will be called extremal. 
We have succeeded in solving this problem in a few 
cases only, namely when only one Xi of j(12 is different 
from zero. In Sec. IV we will show that these cases 
exhaust all the possible boundaries when m = 2, which is 
a physically interesting situation. 

Let us first imagine that we take for the matrix ele
ments of S12 
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(TIl. 10) 

where cP Ii is a set of arbitnry phases. It is clear that 
the eigenvalues of S12 S12+ (i. e., s~) will in general be all 
different from each other, zero, and one. Our general 
Proposition 1 of Sec. Ill. B2 would then imply that the 
x I be all equal to zero (X = 0). This means that this S12 
does not belong to an extremal matrix except if s;! = 0. 
Indeed Ypo has to be equal to one, and 

O=xpo=s!~Ypo=s!!=O. (llI.ll) 

This latter case (s!~= 0) corresponds to the minimal 
value possible for the modulus of s!!. This extremum 
can be reached provided that the phases in (Ill. 10) can 
be chosen in such a way tbat the eigenvalues of S12 S12+ 

are all smaller than one (and s!!=O). When the alJ are 
sufficiently small such a type of solution always exists. 
This result can then be summarized in 

Proposition 2: The hyperplanes a lJ = ° are pieces of 
the (nm - 1) dimensional boundary 8 of volume V. 
There exists a neighborhood of the origin which is 
entirely contained in V. 

According to the characterization of volume V dis
cussed in Sec. IIIB2, all other types of boundaries are 
related to the maximal possible value for the sp name
ly one. Following Proposition 1, X can then indeed be 
different from zero. Thus 

Proposition 3: Except the case of Proposition 2, a 
necessary condition for S12 to be extremal is that S12 S12. 
has at least one eigenvalue equal to one. 

As we have already said at the beginning of this sec
tion, we have been able to obtain the explicit extrema 
of I spol only when one Xi is different from zero and when 
the corresponding value of s is equal to one. Unfortu
nately, since, as is well known, the Lagrange param
eter method may provide saddle points, and since we 
have not been able to solve the phase conditions when 
more than one XI is different from zero, we cannot 
guarantee that we have obtained the true bounds. When 
m = 2 however, we will show that the discussion which 
follows exhausts all possible types of bounds. 

2. x 1 only is different from zero. Un =1= 0 and Un =/; 0 

Let j(i~ = x, the only non- zero' element of j(12, and let 
the corresponding 5t~ be equal to one. 

According to (II. 9a) and (II. 14), X12 and S12 

S12 = U11 S12 U221 , X12 = U11 X12 U221 (Ill. 12) 

must have the "same phase. " 

At this point it is useful to exploit the freedom con
tained in equation (II. 15) in order to choose U~~ and 
~~ real. Since then 

(III. 13) 

is purely real, the phase condition implies that S12 is 
purely real. One obtains then the matrix elements s~~ 
of S12(E) by 

(1lI.14) 
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where e= {Eli} is an arbitrary set of signs. The extremal 
values of 1 Spql are given by the extremal S12(e), i. e., 
those for which S12S12+ =S12 S12t has one eigenvalue equal 
to one 

(UI.15) 

and the other eigenvalues smaller or equal to one. One 
then may choose Ull and U22 to be orthogonal matrices. 
In short 

Proposition 4: Certain pieces of the boundary B of 
V are of the form (III. 15). 

3. Xl only is different from zero. General case 

The conclusion of the previous section does not hold if 
some elements of X 12 are identically zero. Indeed, no 
phase condition ilien exists on the corresponding ele
ment of S12. Remembering (lIT. 13) this situation implies 
that some U~~ and/or some ~i are zero. By re-label
ling the lines and columns of S12, it can be assumed that 
the (m - k) last elements of U~~ are zero as well as the 
(n -I) last elements of U~i. The matrix X 12 can then be 
written 

(k m - k) ~l1X12 
X 12

' = 1,n-l 0 
(UI.16) 

where the amputated 11 X12 is a (k x 1) nonzero matrix. 
In a Similar way the amputated 11S12 is obtained from S12 

by suppressing the (n -l) last columns and the (m - k) 
last lines. 

It is quite obvious in view of the discussion of Sec. 
IIICI that ISjoql has to be chosen inside 11S12. Otherwise 
I Spq I would be zero. On the other hand, the general 
theory of Lagrange multipliers tells us that when one of 
the multipliers Y IJ is zero, the extremal value of Is pq I 
does not depend in general on the precise value of the 
corresponding ali' Indeed the bound of I Sjoq I depends 
only on the values of 11S12 when this type of solution is 
realized. In Appendix C, we show that 11S12 l1S12t which 
by (Ill. 13) is real has an eigenvalue one and that the 
equation 

det(llS12(e) l1S12t(e) -1)= 0 (III. 17) 

represents a set of possible boundary values for V. 
Since this type of boundary does not exist for m = n = 2, 
but is present in many other configurations, we con
clude 

Proposition 5: In almost all cases, certain pieces of 
the boundary of V are of the cylindrical form (Ill. 17), 
where llS12(e) is an amputated part of S12(e). 

IV. APPLICATION OF THE FIRST CASE: m = 1,2 

As an illustration of the results of the preceding sec
tion, we here present the general solution of our prob
lem when 812 consists only of two lines (m = 2). Indeed 
the case m= 1 

is completely trivial since our PropOSition 4 implies 
that anyone of these elements is maximal if 
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"+1 

6a~j=1, 
i=2 

(IV.l) 

i. e., when this line saturates unitarity. Inside the case 
m = 2 it is useful to distinguish two subcases n = 2 and 
n~3. 

A. m=n=2 

When m = n = 2 S12 has four elements 

(IV. 2) 

The extremal S12 can be classified according to the 
eigenvalues of S12 S12 t or equivalently 512 • 

When one of the values of ~12 is one, the boundary of 
PropOSition 4 is given by 

(IV.3) 

As can be seen directly, the only relevant sign among 
the eiJ can be chosen to be Ez4' and E13 = e14 = e23 = 1. 
Hence (IV. 3) describes two surfaces only. The surface 
Ez4 = - 1 is the desired boundary of volume V since it is 
always exterior to the surface Ez4 = + 1 (application of 
proposition 0). 

When the two values of 512 are equal to one 812 simply 
is a unitary matrix. USing the freedom of phases (IT. 15), 
S12 can be chosen real and is then a surface of lower 
dimenSion (2 instead of 3) entirely contained in boundary 
(IV. 3). 

When one of the values of 512 is zero, the two lines of 
S12 are proportional and 

(IV. 4) 

R23 

o.s o B A13 
FIG. 1. Bounds ~as a funCtio~ of G~ when a14 and au are 
fixed (here ar3=vl-aI. = O. 8, ~3 = 1-ll24 = o. 9). The shaded 
regions are those whic\ are excluded by the full requirements 
ofunitarity compared with the trivial bounds a13=ac13 (vertical 
line from B) and a23 = ~3 (horizontal line from A). The ellipse 
starting from C and ending in D (the true bound) has equation 
det(S12S12t -1) '" 0, i. e., (aia +ai4 -1)(ah+~4 -1) - (a13aa3 
-a14ila,)2=O. The dotted line is the hyperbola a13ila3 = a14Ga, = 'Ir, 
while the circle ais + ais '" 1 is another trivial bound. 
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\ , , 

\~ 
'----

0.5 A13 
FIG. 2. Bounds on a23 as a function of a13 when a1l, tJ:!j(i 
=4, •.• ,N'! are fixed. Here 71"=0.346,1[-=0.15, af3=0.835, 
and ~3=0.707, we are in the case 0<1f'<7I"<af3a~3' The 
shaded regions are those excluded compared with the trivial 
bounds a13 = al3 (vertical dotted line) and tJ:!3 = a~3 (horizontal 
dotted line). Remark that the parts of these straight lines be
tween the two hyperbolas a13a23 = 1[- and a13tJ:!3 = 71" are true 
bounds of the domain. The ellipses do not touch the circle 
aJs + a~3 = 1, the other trivial bound any more. 

The maximum occurs when the other value of 512 is one, 
i. e., when 

~3 + ~4 + a~3 + ~4 = 1. (IV. 5) 

Equation (IV. 4) together with Eq. (IV. 5) is of dimension 
2, and is again entirely contained in boundary (IV. 3). 

A23 

A13 
FIG. 3. Bounds on a23 as a function of a13 when au, tJ:!j(i 
=4, ••• ,N'! are fixed. Here 71" =0. 49, 1[- = 0.173, af3 ~O. 707, 
and ~3 = O. 632, we are in the case 0 < 1[" < a13a~3 < 71". The 
shaded regions are those excluded compared with the trivial 
bounds a13 = af3 anda23 = a~3' Remark that the parts of these 
straight lines between the hyperbola ~3tJ:!3 = 1f' and the point 
(af3' a~3) are true bounds of the domain. 
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A23 

AI3 
FIG. 4. Bounds on a 23 as a function of a13 when au, tJ:!jU 
= 4, ... ,N;N> 5) are fixed. Here 1[+ = 0.324, 1l" = - 0.173, al3 
= O. 835, and ~3 = O. 707, we are in the case 1f' < 0 < 1[' < afsa~s. 
The shaded regions are those excluded compared with the 
trivia 1 bounds a13 = af3 and tJ:!3 = ~3' Remark that the parts of 
these straight lines between the hyperbola (a13a23 = 1[+) and the 
axis are true bounds of the domain. 

The surface (IV. 3) (e24 = - 1) is conveniently repre
sented by an ellipse in the a 13 a 23 plane. (See Fig. 1). 
This corresponds to the intersection of the four-dimen
sional space of the ajJ by the hyperplanes 1 $141 = a14 and 
1 $241 = au' two given constants such that a~4 + ~4 .,,; 1. 
All points inside the ellipse are allowed points of vol
ume V. The ellipse is tangent to the straight lines 

a 13 = (1 - ~4)1/2 = ai3' aa3 = (1 - ~4)1/2 = ai3 (IV. 6) 

at the points where 

A23 
-------------------... 

---.... 
---------......... 

---, 
'" 

LIlI--------------"-'-.~\ 
o \ 

\ 

\ 
0.5 AI3 

FIG. 5. Bounds on tJ:!3 as a function of a13 when au and tJ:!j(i 
=4, ... ,N;N>5) are fixed. Here 71"=0.52, 1l"=-0.245, al3 
= 0.707, and ~3 '" 0.632, we are in the case 1f' < 0 < afSaf3 < 71". 
The bounds on the domain are the trivial straight lines als=al3 
and tJ:!s =a~3' 
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(IV. 7) 

where 11 is introduced for later convenience. These 
points (corresponding to surfaces of dimension 2 and 
not 3 in [) are the only remnants of the case of proposi
tion 5 corresponding to 512 amputated of its first or 
second line. Finally the ellipse is also tangent to the 
circle 

(IV. 8) 

another remnant of 512 amputated of its second column. 

B.m= 2,n> 2 

When m = 2 and n> 2, 512 consists of two lines 

(IV. 9) 

When the value of sg is one, the form of some bound
aries is, as usual 

(IV. 10) 

In the plane a 13 , a 23 , once all the other a's have been 
fixed, (IV. 10) is represented by ellipses or hyperbolas 
which are tangent to the critical straight lines 

n+2 

(a) a 13 =(I-L; ~i)1/2=af3 
4 

n+2 

(b) a 23 =(I-L; ~i)1/2=a~3' 
4 

(IV. 11) 

At most two of these ellipses are relevant. Indeed 
(IV. 11a) and (IV. 11b) are of the form of equation (III. 17) 
related to 512 amputated of one of its lines. So that part 
of the lines (IV. 11a), (IV. 11b) are bounds of domain V. 
For these later bounds to appear, according to (C. 13), 
one must be able to find phases such that the line which 
has been removed from 5 12 is unitary orthogonal to 1l[J22. 

In this case 11U
22 is simply the remaining line in the 

amputated 512
• [Technically one uses (C. 3) and (C. 6) 

with 12U11 =0 being a consequence of unitarity for U ll ]. 

Here we simply describe the final result. As sug
gested by (C. 14), let 11+ and 11- be defined as follows: 

(IV. 12) 

n+2 

11-=all a 21 -L; a li a2jO (IV. 13) 
i=4 
UI 

where all a 21 is the largest of the products ali a 2i (i 
= 4, ... ,n + 2). Remark that, when n = 2, 11+ = 11- = 11 

(IV. 7). 

Four cases occur whether 

(IV. 14) 

Specific examples are drawn in Figs. 2-5. 

V. FURTHER STUDY OF DOMAIN r IN THE FIRST 
CASE 

In this section, we study the relations between a 
matrix 512 and the matrices which are contained in it 
from the point of view of our problem. 

Consider the decomposition 

(V. 1) 
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First let us remark that if a matrix 512 is unitarizable, 
then evidently any of its submatrices is unitarizable. 
This shows immediately that, if S12 has all its pseudo
eigenvalues smaller than or equal to one, i. e., if 

(V. 2) 

is a semidefinite positive matrix, then for any am
putated matrix 11512 

(V. 3) 

Inversely, one may ask what are the conditions to be 
fulfilled by 11512 , 

12
5 12 , and 215 12 for 5

12 to be unitariz
able by the adjunction of a matrix 22S12. When 21S12 and 
125121 have one line only, the necessary and sufficient 
condition for the existence of a number 22512 is given by 
the theorem. 

Theorem: Let A = (11512, 125 12) and Bt = (11512t , 21512t) be 
given complex matrices (21512 and 12S12t one line only). 
If Oil = 1 - AA + is a positive matrix, and if det( 1 - BB+) 
is positive, then there exists a number 22512 such that 
512 is unitarizable. 

Proof: First we show that the conditions on A and B 
imply the existence of a number 22512 such that 

(V. 4) 

Then we deduce that 1 - S12 5 12
+ is positive, thus that 5

12 

is unitarizable. 

Writing 1_512 5 12
+ in the form (m -1, 1), 

1 _ 512 S12+ = (OIl 
\a; (V. 5) 

we find [see(D. 9)] 

det( 1 - 5
12 

5
12+) = (01 4 - a; ail 012) det a 1 • (V. 6) 

In this formula we are allowed to use ail since OIl is 
positive. Consequently det a 1 is also positive, and (V. 4) 
becomes 

a 122
5 12 12 + b 225

12 + b* 225
12* + c> 0, 

where 

a = 1 + 125 12 + OIil12512, 

b = 125 12+ ail11512 215 12+, 

C = - 1 + 21S12 215 12 + + 215 12 11512+ ail 11512 215 12+. 

A solution 215 12 of Eq. (V. 7) exists if 

Ib 1

2 -ac>0. 

(V. 7) 

(V. 8) 

(V. 9) 

As is shown in Appendix D, this condition can Simply be 
written as 

det Oil det(l- B8+) > 0, 

which is true by hypothesis. 

(V.lO) 

Finally, to prove that 1 - 512 512
+ is positive, let us 

consider an arbitrary vector V, and 

(V. 11) 

Decomposing Vt=(Vf, V!), where V4 is a number, one 
shows easily that M is always positive. Indeed 

M = Vi a 1 VI + VIa2 V4 + V~ a; VI + V; a 4 V4 • (V. 12) 

Using the inequality a 4 > a; OIi1 a2 (V. 6), we write 
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M> (V;a~/2+ V;a;ail/2)(a~/2 VI + ai1/2 0!2 V4»0 
(V. 13) 

which is clearly positive for any V. 

VI. SECOND CASE 

A. Presentation of the problem 

Let as usual all the matrices of the problem have the 
decomposition (m, n, p) 

S(m, n,p) =(;1
1
2
1
t ::: ::~. (VI. 1) 

~13t S23t S3;1 

The problem we would like to solve is to obtain the 
bounds on the modulus of one element of Sl1 once the 
moduli of all the elements of S12 are given. We have 
succeeded in giving the general solution of this problem 
when m = 2 only. 

According to (II. 6) and (II. 9) the general form of X is 

x(m,n,p)~~:. Xi' ~, (~.2) 
where XU is a m x m symmetric matrix whose only non
zero elements are those corresponding to the special 
element sp. of Sl1. The possible forms are either 

(X11 0\ 
X

11
(I,m-l)=\o 0)' X11 =Sl1 (VI. 3) 

or 

XU(l, l,m- 2)~ ~ o 

o 
(VI. 4) 

In Appendix E, we have solved with some details the 
problem when m = 2 and p = O. We next present the re
sults of this appendix and some indications of the more 
general problem. 

B. Some solutions of the problem when p = 0 

1. Real solution when m is arbitrary 

Let ajj (i=(I, ... , m); j=(m + 1, ... ,m +n» be the 
given moduli of S12. Let EiJ be an arbitrary set of signs 
and let 

SiJ=Ejja ji (i=I, ... ,m; j=m+l, ... ,m+n) 
(VI. 5) 

the elements of SI2(E). 

A system of extremal solutions is obtained by 

Proposition 6: LetA(E)=(Sl1,SI2) be a real matrix. It 
is extremal if 

(VI. 6) 

This is not difficult to show by using the method out
lined in Appendix E. In this case all matrices involved 
in the problem are real, and the phase conditions are 
satisfied trivially. 
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In order to obtain explicitly the extremal value of the 
element I sp.1 belonging to Sl1, one may use the following 
method. 

(i) Choose a system of E and compute the eigenvalues 
of S12( E) S12t( E), namely s~. The system (E) is allowed if 
all S~ are smaller than or equal to one. 

(ii) Compute the orthogonal matrix U11(E) which diag
onalizes 512 512t . 

(iii) Choose Ej (i = 1, ... ,m) and let the diagonal ele
ments of the diagonal matrix Sl1( E) be 

(VI. 7) 

(iv) The modulus ap.(E) of the element sp. of 511(E) com
puted from 

(VI. 8) 

is an extremal value. 

2. Other solutions when m = 2 

When m = 2, we have shown in Appendix E that some 
trivial bounds can be reached which are not of the form 
of Proposition 6. In these cases the extremal matrices 
5 are indeed complex. 

The explicit forms of these bounds are of two types. 

(VI. 9) 

A122 

FIG. 6. The curve of ai2 as a function of n2 once 0"1 and 0"2 have 
been fixed. Here 0"1 = 0.6 and 0"2= 0.2. The vertical dotted line 
has equation -n2 = (1- 0"1)(1- 0"2) and the horizontal one has ai2 
=min(1-0"j, 1-0"2)' Let 'If'= ~7.la1ia2i and 1T-=~I~,-~7:~au' a2i 

j~1 

(all~1 ~ aUa2j for all i). The intersection of the curve with 1T 
= 'If' or 1T= 11'" determines possible upper and lower bounds for 
a¥2' 



                                                                                                                                    

1532 G. Mennessier and J. Nuyts: Some unitary bounds 1532 

A122 A122 

A132 

0.59 0.33 0.80 7(c) 0.85 0.74 0.30 

7(b) 0.85 0.18 0.30 7(d) 0.09 0.26 0.40 

FIG. 7. Example of bounds of ai2 as a function of ah once au. a23 and au have been fixed. Remark that the straight lines ai2 = 1 
- a23 - a~4 and ah + ai3 = 1- ai4 may be parts of the true bound of the domain. 

(VI. 10) 

where we have assumed that ~~;~ (~i - ~i) is positive. 
In both cases for this type of bound to appear there most 
exist a system of phases for the first two lines of S such 
that they are unitary orthogonal. 

3. Drawing of the results 

When m = 2, Eq. (VI. 6) may be represented by a sur
face in a 2n + 1 dimensional space. We here write the 
equation of the surface explicitly in the variables a12 

andalJ (i~ 1, 2; j == 3, ... n+ 2). Define.the following 
combination: 

(VI. 11) 
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(VI. 12) 

(VI. 13) 

Equation (VI. 6) implies that the scalar product of the 
first two lines of S is equal to zero, and reads 

The curve of a~2 as a function of 1T2 is given in Fig. 6 
when al is larger than a2 • 

It may also be worthwhile to have a plot of a~2 as a 
function of one of the elements of S12 (say ~s). There is 
a great num.ber of different configurations and we. have 
chosen to restrict ourselves to four explicit curves 
[Figs. 7(a)-(d)]. 
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APPENDIX A: GENERAL THEOREMS 

We here recall some well-known theorems and give 
indications for their proofs. 

(1) A unitary matrix U can always be written 

U=exp(iH), (AI) 

where H is a Hermitian matrix (Ref. 1, Vol. I, Chap IX, 
p.27S). 

(2) A unitary symmetric matrix U can always be 
written 

U=exp(iR), (A2) 

where R is real symmetrical (Ref. 1, Vol. n, Chap. XI, 
p.4). 

(3) A Hermitian matrix H can be diagonalized by a 
unitary transformation U 

H=UHW. (A3) 

The same is true for a unitary matrix [by (AI)]. His 
diagonal real (Ref. 1, Vol. I, Chap. IX p. 274). 

(4) A real symmetrical matrix R can be diagonalized 
by a real orthogonal transformation 0 

(A4) 

The same is true for a unitary symmetric matrix [by 
(A. 2), (Ref. 1, Vol. I, Chap. IX, p.2S5]. 

( 5) Let A be an arbitrary (m x n) matrix. Then the 
semipositive Hermitian matrices AA + and A +A have the 
same positive eigenvalues ~ with the same multiplici
ties. For the eigenvalues zero, the multiplicities differ 

by In-mi. 

(6) There exists a unitary matrix U which diagonalizes 
AA + and a unitary matrix V which diagonalizes A +A, and 
such that if 

(A5) 

..4 is in a pseudo-diagonal form which can be chosen real 
positive. When n ~ m, this means that, if A is decom
posed in 

A(m, n-m)=(All , AI2). (A6) 

All is a square m x m diagonal real positive matrix with 
diagonal elements ai' and A 12 is identically zero. 

Proof: In the proof of (5) and (6) one may use the 
lemma: 

(7) If AA + = 1m and A +A = In' where 1k is the k-dimen
sional unit matrix, then m = n. (This follows trivially 
from rank considerations. ) If AA + = 0 then A = O. 

The existence of U' s and V's which diagonalize, 
respectively, AA+ in D(ll and A+A in D(2) follows from 
(3). USing (A. 5) as a definition of..4, one obtains 

(A7) 

This implies that ..4 may be decomposed in blocks ..4r & 

corresponding to one given eigenvalue d~ll of Dl and to 
d!2) of D2, with 

A =0 if d(ll *d(2) rs T s· (AS) 
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ArrA;r=dr 1(1l> (1) is the multiplicity of d~l), 
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(2) is the multiplicity of d~2). 
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(A9) 

The internal consistency of (AS) (A9) and our lemma 
imply (5). By ordering the eigenvalues dr of Dl and D2 
by decreasing order, the Arr blocks appear on the main 
diagonal. Since the Arr are unitary up to a factor they 
can be made proportional to the unit matrix by a suitable 
unitary transformation inside the subspace correspon
ding to one eigenvalue. A final phase transformation 
makes A real positive. This completes the proof of (6). 

(8) In complete analogy with (5) and (6), an arbitrary 
(m x n) real matrix A can be pseudo-diagonalized by 
real orthogonal transformations 0 and P 

(AI0) 

APPENDIX B: PROOF OF (111.9) 

In this appendix we show that the general solution of 
Eqs. (II. 1), (n.2), (II.9b), (II. 12), invariant under Eq. 
(n. 14), (nl. 4), is of the form (III. 9). 

With the notation (III. 1), the Lagrange equations 
(n. 12) become 

a - 512 X12+ = X 12 512+, 

b - 511 X 12* =XI2 522+, 

c- 0 =XI2 523 *, 

while the unitarity conditions (n. 1), (n.2) read 

a - 511 511+ + 512 512 + + 513 513
+ == 1, 

b - 511 512 * + 512 822
+ + 813 523

+ = 0, 

C - 511 513* + 512 523
+ + 513 533

+ = 0, 

d - 512 t 812* + 822 822
+ + 823 823

+ = 1, 

e - 512t 513* + 522 523* + 523 533
+ = 0, 

f - S13 t 513* + §23t 523* + 533 533+ = 1. 

(B1) 

(B2) 

Since the matrices S12 S12+, X 12 X12+, and S12 X12+ are 
Hermitian and commute, due to Eq. (B1a), it can be 
shown (cf. Appendix A) that S12 and X12 can be "pseudo
diagonalized" in the canonical forms. 

s,,<m,n_ml=(' 0 s, (B3) 

j(12(m,n_m)= (B4) 

where we have assumed for definiteness that n is larger 
than or equal to m. Moreover the S j can be taken to be 
real nonnegative while the XI are real. 
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Since ,511 has to satisfy the equations 

511 512* j(121 = _ 812 j(12+ 811, 
(B5) 

SI1 j(12* il12 t = j(12 j(12 + 811 , 

which are consequences of (B2) and (B1), it assumes 
the form given by 

given 0 
Sj* S=O S 

+ Xj -Xj +Xk -Xk x=O 

1 

811 = (' 2 3 ) (B6) 

3 t 2 

where the lines and columns of 811 have been labelled 
with the corresponding diagonal values of j(12 and 812 

and the shaded blocks or blocks labeled 1,2, ... ) are the 
only nonzero ones. More precisely s~~ may be different 
from zero only if either 

(1) Sj=sJ*O 

(2) Sj=Sj=O 

and Xj = - Xj *0 (blocks 1, 1 t), 

and Xj = ±Xj * 0 (blocks 2,3), 

(3) Sj and sJ arbitrary and Xj=Xj=O (block 4). 

An analogous reasoning applied to $22 leads to 

given 0 S --0 Sj* any S 

+Xj -Xj +Xk -Xk x=O n-m 

1 

2 3 

2 

4 

(B7) 

Compared with the 511 , the structure of $22 is quite the 
same except that the block 4 in 822 has been expanded to 

TABLE I. 

m 

nl n2 n2 ~ 
any x 

x ..fT"=Sf 

m -x .ff=S'l 

x=o .. ./1- 82 

s= any x 1 

1 

8 

n 8 

8 

0 

P 

aAll elements of S are zero except where indicated. 
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include the n - m extra lines and columns. Equation 
(B. 1b) then implies the following relations between ,511 

and $22 

,511 (block 1) = - 822 (block 1), 

811 (block 2) = + 822 (block 2), 

811 (block 3) = - 822 (block 3). (B. 8) 

Equations (B1c) and (B1d) then reduce ,513 and 823 to the 
form 

,523= x=o 
(B9) 

n-m 

Unitarity (B2) then implies that the blocks 1 in (B6) 
and (B7) are square matrices except when Sj = 1. When 
S is different from zero and one, this signifies that the 
nonzero x's appear in pairs of opposite sign (xJ := - Xj)' 

The fact that there are basically no other conditions 
on the possible values of x's and s' s can be verified 
readily by checking that the matrix of Table I is unitary 
and symmetric, and satisfies the Lagrange equations. 
In this table specific values of ,513=0, 823 =0, 811, 822 , 

and 533 = 1 have been chosen quite arbitrarily. We have 
the right to do so because we have only to show that 
there exists a solution for those submatrices which does 
not give further restrictions on the matrices j(12 and 
812

• 

APPENDIX C: PROOF OF (111.17) 

When .K12 has one non-zero element (.K~~ = x) and U11 

and ua2 have respectively (m - k) and (n -l) zeros on 
their first columns, X12 is of the form 

nl ~ n2 ns n-m p 

1 

8 

8 

8 

0 

-.-11-82 

--./1-82 

--./1-82 

1 

1 

1 
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(

lX12 
X12 (k' m - k) = 

l, n -l 0 
(Cl) 

where llX12 is a k x 1 nonzero real matrix. Analogously 
S12 will be written in rectangular blocks 

where l1S12 is a real matrix. 

Let Un and ua2 be the unitary transformations 

(

lUll 

U11 (k, m - k) = 
I,m -1 0 

and 

(

1ua2 

ua2 (l, n -l) = 
1, n-l 0 

which pseudo-diagonalize S12 in 512 

S12 = U 11 512 ua2 t. 

(C2) 

(C3) 

(C4) 

(C5) 

The matrix S12 has 8 1 = 1. Also remark that 11U11 and 
11ua2 are, respectively, k x 1 and l x 1 matrices. 

We now show that l1S12 11S12t:::: 11S12 l1S12+ has 11Ull as 
an eigenvector with eigenvalue 1. Indeed 

(C6) 

and 

11S1211S12+ 11U11 = (11U11 , 12Ul!) S-12 (101 0 \ 
12U22t 12U22*) 

(C7) 

Let U11 and {ja2 be the k x k and l x l orthogonal ma
trices which pseudo-diagonalize l1S12. Then 

c O)~' 0 o)t' J S12= 

I m- k ~ 
22812 23812 

0 32812 33812 0 

~e 0) (Uo" 1~) 812 
I

m
_

k 
0 

Let Ull and {j22 be the (m -l)X(m -1) and (n-1) 
X(n -1) matrices which pseudo-diagonalize the sub
matrix 

(
k - 1, m - k\ = (22~12 
l - 1, n -l .) 32S 
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of 512. Thus 

S=12 __ (101 0 \ S-12 (11 0) Ull} 0 fj22t' 
(C10) 

Combining (C. 10) with (C. 8), one sees that 

(U
=l1 

U
11

= 0 (Cll) 

(C12) 

which are of the desired form (C3), (C4). It is again 
clear that the first column of flU (resp. U22 ) is precise
ly 11U11 (resp. llU

22). 

The crucial property of this solution can be seen in 
Eq. (C8). When l1S12 is diagonalized, the number 11S12 is 
one. This implies immediately that 13§12 and 31S12 have 
to vanish because of unitarity. This last property is 
equivalent to 

12s12t 11U11 = 0, 

21S12 llU22 = 0, 

since (U11)"l = U11t. 

(C13) 

For this type of solution to exist, it is necessary, 
once a set of E;/ s (= ± 1) corresponding to the real part 
of 11S12 has been chosen, and once one eigenvalue of 
l1S12 l1S12t has been set to one, to see whether there 
exists a set of phases for 12S12, 21S12 , and 22S12 such that 
(C13) is satisfied and such that the resulting S12 has all 
its corresponding 8~ between zero and one. 

It should be remarked that for condition (C. 13) to 
hold, a sum of k or l complex numbers whose moduli 
R/ are known has to vanish. This is in general possible 
only when k or l is larger than or equal to three. The 
condition reads for all i 

R; "" friR j' (C 14) 

It is not difficult to see that this type of solutions 
forms (nm - 1) dimensional pieces of boundary B by 
taking all moduli very small except along the pseudo
diagonal of S12. 

APPENDIX D: PROOF OF det at (Ib 12 • ac) = det (1 - 88+) 

Let 

A = (l1S, 12S), 

Bt=(l1st, 21St), 

011= 1 -AA., 
{3 = 1_11S llS+, 

(Dl) 

(D2) 

(D3) 

(D4) 

where 12S and 21St are one-column matrices, and a 1 and 
{3 are invertible. Let also 

a= 1 + 12S+ a;:112S, 

b :::: 12S+ a;:l11S 21S+, 

C = - 1 + 21S 21S+ + 21S 11S+ ai111S 2lS+. 

We want to prove that 

(I b 12 - ac) det a 1 :::;:det(l- BB+). 

(D5) 

(D6) 

(D7) 

(D8) 
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M~1_M;:1=M21(M1-M2)M~1. 

First it easy to prove that 

det{3=adet (Xl 

by taking the determinant of the equation 

(D9) 

(DlO) 

(Dll) 

(Dl2) 

Using (D9) again for M = 1 - BB., taking its deter
minant 

det(1- BB+)=ddet{3, (Dl3) 

(Dl4) 

and replacing det {3 by (Dll), it remains to prove that 

1 b 12 - ac = ad, (Dl5) 

which follows simply by repeated application of (D10). 

APPENDIX E 

In this appendix, we present with some details the 
calculations leading to the bounds of 8 12 when m = 2 and 
p=O, namely when 

(

Sl1 

S(2, n) == S12t (E1) 

The moduli of S12 are supposed to be given. Then 

(

Xu 
X(2, n)== 

X12t 
(E2) 

and 

(E3) 

1. Solution of the first-class condition 

Following (II. 14), let us perform a transformation 
with the particular matrix 

(

Ull 

U(2,n)== ° (E4) 

This transformation leaves the submatrices (E1), (E2) 
globally invariant, but does not respect the structure of 
XU [(E3»). Restoring this structure will be a supple
mentary second-class condition. 
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As is shown in Appendix A, 812 can be pseudo
diagonalized 

812(2, n _ 2) = (11812 , 128 12), 

with 

(' 118
12 

= ° 

1536 

(E5) 

(E6) 

11S12 = 0. (E7) 

We shall assume here, without loss of generality, that 

1 *det 11812 * 0. (ES) 

At the same time, one may choose €j and 

(

l1sa2 

S22_ 
12$22t 

11§22 == _ S11, 

12~2==0, 

22S22 == 1
m

_2• 

The Lagrange equations 

S+ X==X+ 8 
then imply 

(11) 8 11+ XlI + 12512*X12t ==X11+ 5 11 + 11X12* 115121 , 

(12) Sl1+UX12 ==Xu+1l512 + llX12* 11522 , 

(13) Sl1+12X12 

(22) 11512 +11X12 

(23) llS12+12XU: 

= 12X12 * 22522 , 

= 11X12 + l1S12 , 

=0, 

(E9a) 

(E9b) 

(E10a) 

(E10b) 

(ElOc) 

(E10d) 

(Ell) 

(E12) 

where for X 12 a decomposition (2, m - 2) has also been 
made. Equation (E12 (23» together with (E6), (ES) 
imply 

(E13) 

while (E12(22» suggests the convenient parametrization 

Z=Z+. 

Finally (E12(12» leads, for XlI, to the value 

(E14) 

(E15) 

X11 =Z511 +S11 Z t
, (E16) 

since (E12(U» and (E12(13» are then identities. 

2. Solutions of the second-class conditions 

There are four types of second-class conditions: 

(a) Xu must be of the form (E3), 

(b) the phase of X12 must equal the phase of 8 12, 

(c) ilie phase of the corresponding elements of S12 and 
X12 are equal, 
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(d) the moduli of the elements of 812 are fixed. 

Let Ull be an arbitrary (2 x 2) unitary unimodular 
matrix 

U11 = ( U 
-v* 

the expression of 811 is 

Sl1 = Ull Sl1 U11t 

( 

U2 c1 + v2 c2 

= -uv*c
1 
+u*vc

2 

so that 

In turn 

But, following (E16), the diagonal elements of XU 
should be real; thus 

U*V= f! UV* 

(E17) 

(E18) 

(E19) 

(E20) 

(E21) 

is purely real (e ' = + 1) or purely imaginary (E' = - 1), 
and Z becomes (S1 '#sz) 

(E22) 
The value of llX12 is then obtained from (E. 14). By 
modifying suitably the E; of (E. 9b) one may always 
choose 

e' =+ 1 (E23) 

as it is not difficult to verify. The transformation Ull 
is then equivalent [by (il. 15)] to a purely real (thus 
orthogonal) one. 

Accordingly there are three distinct possibilities: 

(a) UZz is real. All phase conditions are trivially 
satisfied. The moduli of the elements of 812 can be 
given their pre-assigned value by using the freedom on 
Ull

, s;, and UZ2 as shown in Appendix A. At this point, 
it is clear that this type of solution exists for arbitrary 
values of m, since when all matrices are real the phase 
condition is trivially satisfied. One method to obtain the 
explicit value of that bound is explained in the main text. 

(b) U22 is complex. As can be seen directly from 

(E24) 
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(E25) 

The condition for S12 and X12 to have the same phase is 
that each line of U11 Sl2 is proportional to the corres
ponding line of U11 X12. This leads to the relation 

(E26) 

Let us analyze one of these two analogous case, say 

(E27) 

which implies in particular that €l Ez = - 1. Then, as is 
seen from (E18), S11 is equal to zero while X12 has its 
second line identical to zero. The maximal value of a12 

is then simply 
n+2 

a12=(1-~ t41)1/2 (E28) 

and does not depend at all on the second line. The ele
ment (22) of 811 then becomes 

~2=(~ t41- ~ c;l)1/2. (E29) 
1=3 1=3 

This result is analogous to the amputated case of 
Proposition 5. For this maximum to be realized, it is 
evidently necessary that 

... 2 n+2 

~ a~1 ~ ~ c;l' (E30) 
/.3 1=3 

[Otherwise the other solution of (E. 26) has to be con
sidered. ] Moreover, there should exist a system of 
phases for Sl1 and 812 such that the two lines of the 
2x(2 + n) matrix 

(E31) 

are unitary orthogonal. This means that a sum of (n + 1) 
complex numbers of known moduli R I = all azi has to 
vanish. The condition is equivalent to (C14) and reads 

(E32) 

(c) X12 =O. This is the trivial case which corresponds 
to X identically zero, and consequently 

(E33) 

which is possible if, by a suitable choice of phases cP Ii' 

sli=exp(iCPli)ajJ (bl,2.j=3, ... ,n+2), (E34) 

the two lines of S12 can be made unitary orthogonal. 
This leads again to conditions of the form (E32). 
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On the spontaneous breakdown of compound 
symmetries 
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We consider the spontaneous breakdown of a symmetry group W which is the direct product of two 
groups: 'Ii = .J/I X ffIJ. We study the conditions under which the breakdown of W entails that of both 
.,1 and iii. Our results are corroborated by an explicit example, where W is S U 2 XL, L being the 
Lorentz group, and such that any spontaneous breakdown of W entails that of both S U 2 and L. 

I. INTRODUCTION 

Spontaneously broken symmetries can be dealt with 
in different ways, 1-6 according to the general theory one 
is working in. Different approaches provide in general 
different characterizations for the breaking to occur, 
yet the group theoretical properties of the breakdown, 
as algebraic and therefore more abstract attributes are 
involved, should be independent of the approach, that 
is intrinsic to the system under consideration. 7 

In the present paper we shall consider a problem of 
algebraic type, namely concerning the breaking of a 
symmetry group 'Ii which is the direct product of two 
Lie groups, '-'If and fjJ. We shall investigate this problem 
in the Wightman formulation, and, under some condi
tions on the representations of .JII and fjJ involved, we 
shall show that the breaking of '11 entails that of both .11 
and [J(J. Put in a more precise fashion, we shall show 
that if the physical quantities transform according to an 
irreducible nontrivial representation of iii, then, if JI 
breaks down, fjJ does the same. 

Therefore, if.JII is broken, in order to avoid the 
breakdown of!iJ, the system should transform according 
to a representation of iii containing the one -dimensional 
representation. 

This situation will be illustrated by an example, 
where the symmetry group 'Ii is the direct product of 
the internal symmetry group SU2 and of the Lorentz 
group, the physical quantities considered being self
interacting vector mesons. It will be shown that any 
spontaneous breakdown of «J forces both the internal 
symmetry and the relativistic one to break down, and 
that this agrees with the general results mentioned 
above: in fact, in our example, both SU2 and the Lorentz 
group act via irreducible nontrivial representations. 

The following sections are organized as follows: in 
Sec. II we shall derive some general results within the 
Wightman formalism; in Sec. m we shall work out our 
example, which is described in terms of a Lagrangian; 
Sec IV will be devoted to some comments, regarding 
particularly the relationship between our results and 
other works on the breakdown of compound symmetries. 

II. GENERAL RESULTS 

We want to give some general results concerning the 
occurrence of the spontaneous breakdown of a symme-

try, the latter being described by the direct product of 
two groups. 

These results are quite general and can be convenient
ly stated in the Wightman formalism. 

Let cp be a field (or a Wick polynomial in several 
fields) acting in the Hilbert space :Ie. Suppose cp to trans
form under the group 'Ii =.JII ><9IJ (.J/I and ~ being two 
groups) as follows: 

cp",b(X) _ (T(A, B)cp)",b(X), 

(T(A, B)cp)"' O(x) =~' "'(A)Dtiib'(B)cpa;o'(x), 

VA E.J/I, B 681/, 

(1) 

where.J/I3A-D.J/I(A), [jJ3B -DfjJ(B) are finite-dimen
sional representations of JI, [jJ, respectively. 

We say that.JII is an exact symmetry if there exists 
a representation A - U A of fi into the unitary operators 
on :Ie such that U A leaves the vacuum invariant, for any 
A, and 

(2) 

I[jJbeing the identity operator of [jJ. 

A quite similar definition holds of course for [jJ. Thus, 
if .JII is an exact symmetry, any Wightman function has 
the follOwing property (covariance): 

(3) 
=.gIla'l(A) ® ... ®.g;n .'n(A}(n, cpllibl(X1)' •• cp"'nbn(xn) n); 

in particular, for n = 1 

But if we assume that Dfi does not contain the identity 
representation, the latter equality entails 

(n,cpa,b(x)n)=o Ya,Vb 

(4) 

On the other hand, if.JII is not exact, we have a broken 
symmetry. This means that at least one Wightman func
tion does not enjoy the covariance property (3). If we 
assume-as usual-that a symmetry proves broken 
through the noncovariance of the one-point Wightman 
function, and furtherly that D./l does not contain the 
identity representation, then the breakdown is charac
terized by the following statement: 

(S) If fi is broken, then there is at least one index a 
such that 
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(0, «>",b(X)O) '* 0, Vb. 

After this preparation, it is easy to prove the follOwing 
result: 

Theorem 1: Assume that..g, and DaJ do not contain 
the identity representation; then if Jlis broken, 9J is 
broken as well. 

Proof: If.;t is broken, by (S), 3 a such that 

(0, «>a,b(x)n) '* 0 Vb 

but if :JJ were an exact symmetry, the latter quantity 
(0, «>a,b(x}n) would vanish for any a, b. Thus:JJ must be 
broken as well. 

A similar Situation prevails if.tl proves broken 
through the noncovariance of another. Wightman function 
say, the nth. First of all, if.:4 is exact, and we assume 
that ®D.,Ildoes not contain the identity representation, 
we have 

(n, «>a1b1(X1) ••• «>anbn(x")n) = 0 'I au ... ,an; b 1> ••• , bn• 

Thus if .Jl is broken, there exists a n-tuple iiI> ••• ,an 
such that 

(n, «>il1b1(Xt>· •. «>anbn(x,,) n) '* 0 V bu ... ,b". 

Within this framework, the follOwing theorem holds 
true: 

Theorem 1 (n): Assume that db ~ , db Dii1 do not contain 
the identity representation. Then if .:4 ooes not leave 
the n-point function invariant, ;» is broken as well. 

The proof mimics that of the preceding Theorem 1. 

In the follOWing, we shall speak of a broken symmetry 
only in the sense of statement (S). It can be noted that 
this is the usual assumption in several field-theoretical 
models (0' models, tadpole techniques, variational 
approaches, etc.). Even with this assumption there are 
some relevant generalizations of Theorem 1, namely: 

Theorem 2: Let C; be any Lie group and Dg any rep
resentation of it acting on the fields «>. In order that a 
subgroup q I C ~ is conserved (i. e., is contained in the 
"exact" reSidual symmetry), a necessary condition is 
that DC contains, whe~ reduced under ~. " the identity 
repres'entation l~" of <:J '. 

The proof of this statement is similar to that of Theorem 
1. 

Another generalization of Theorem 1 deals with groups 
of transformations acting not only on the indices a, b, 
of «>a,b(x) (corresponding to the internal degrees of 
freedom), but on the coordinates x as well. Let us for 
instance suppose that;» is the homogeneous Lorentz 
group. Then (T(A,B)«»a,b(x) reads: 

(r(A, B)«»a,b(x), =~,a'(A)~,;t'(B) «>a',b'(Asx) 

and, if fJJ is an exact symmetry, we have in particular: 

(0, «>a, b(X)n) =D;£,b'(B) cn, «>a,b'(Asx) n). 
But if we assume translation invariance of the theory, 
(0, «>(y) 0) does not depend on the argument of «>, so the 
last equality reads 

(n, «>a,On) =D$b,b'(B)(n, «>a,b'n) 
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and, if, as above, D;» does not contain the identity 
representation, 

(n,«>a,bo)=o Va,b. 

Thus: 

Theorem 3: Theorem 1 still holds when;» is the 
Lorentz group. 8 

The relevance of this theorem is evident in the ele
mentary particle physics, when describing for instance 
an isospin multiplet of vector particles (e. g., the p 
mesons), that is, particles transforming in a definite 
way both under an internal symmetry group.:4, and 
under the Lorentz group. Then, under the hypothesis of 
theorem 1, if.:4 is broken, the Lorentz group is broken 
as well. 

Our baSic results (Theorems 1 and 3) might appear 
surprising at first Sight, since one knows that for 
nonspontaneous symmetry breaking the internal symme
try is broken but Lorentz invariance is not; to clarify 
this point, we want to emphasize that what is assumed 
here is that the direct-product structure of the two 
groups is preserved. In other wordS, we have the 
situation: 

Internal 
Symmetry 

Nonspontaneous 
breaking: Broken 

Spontaneous 
breaking: Broken 

III. A CONCRETE MODEL 

Lorentz- Direct-Product 
Invariance structure 

Preserved Broken 

Broken Preserved. 

In the present section we shall consider a concrete 
model which behaves according to Theorem 3: more 
specifically, the breakdown of the Lorentz invariance 
will arise in any spontaneous breakdown of the whole 
symmetry group. This will be shown, for simplicity 
sake, in the framework of the "semiclassical" 
Lagrangian formalism. It is known, actually, that the 
equations obtained by means of this formalism, if suit
ably interpreted, remain essentially valid in the quan
tum-field-theoretical approach. 6,9 To our purpose, 
therefore, we may use equally well the Lagrangian 
formalism, which provides in fact the most simple and 
convenient scheme for the analysis of the abstract situa
tion, because it retains all the group-theoretical struc
ture underlying the problem. More speCifically, we 
want to obtain: 

(i) The directions in the representation space along 
which the symmetry may break down, together with the 
residual symmetry group. 5-7,10 These directions corre
spond to the stationary points of any quantity Q = Q( if> ) 
which is left invariant by the symmetry group (the static 
part £st of the Lagrangian in our case), namely the 
pOints ij; where 

O£st =0 
oif> • 

These directions are only determined by the group
theoretical structure of the representation space, and 
in particular are independent of the very source of the 
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breaking (e. g., tadpole terms, bootstraps, external 
driving forces. 11,12) 

(ii) The "mass spectrum" of the system under consid
eration. In the Lagrangian formalism, after the intro
duction of the "shifted" fields 

qJ=tP-tP 

with vanishing vacuum expectation values (as in the C1 

model or in the tadpole formalism I3,14), the mass 
matrix is given by the second-order coefficient in the 
expansion of £ in terms of the "true" fields qJ 

( 
152£ ) 

I5qJ 115qJ j 'i 

around the stationary point~. Of course, this definition 
is meaningful only for c-number valued tP's; it is known, 
however, that the latter quantity is the analog of the 
quantum-field-theoretical mass tensor, which is given 
in fact by the second (functional) derivative of the 
Legendre transform of the functional generating the T
ordered connected Green functions. 9,6 

After these preliminaries, let us define the model, 
which describes a system of seifinteracting vector 
mesons. 15 

The symmetry group is~· =L XSU(2), L being the 
Lorentz group and SU(2) the isospin group. We denote 
the fields by V II

'(.\. =0,1,2,3; l = 1, 2, 3), with the 
'metric' g: 

We define the Lagrangian 

£ = - tFi ... F n ... +tm2ViVP. +gElJ I«(J'" ViA) V{ V~ 

+ tg2(Vi V~ V}AV}/L - V~VIAV~ Vi/L), 

where 

F I - (J Vi (J Vi. (J - (J. R A"'- A ... - ... A' A-axx' m,gE . 

The spontaneously broken solutions are the nonzero 
solutions of 

15£.t -0 
1)V~ - , 

(5) 

(6) 

where £st denotes the part of £ which does not contain 
any derivative of the V's. After some manipulations, 
(see the Appendix), one sees that the solutions are two: 

(A) VIO=O, [=1, 2, 3. 

VIi=1)liJ.l.(g.f2)'I, l,i=1, 2, 3 

where J.l.2= _m2 >0, 

(B) VIO=VI3 =0, l=1, 2, 3 

VII = 1) Ii J.l.g'l, l,i=1, 2, 

with J.l.2=_m2>0. 

These solutions exhaust all the solutions of (6) in the 
sense that all the solutions (apart from -the trivial one 
VIA = 0) can be reduced to either of them by means of a 
transformation of the symmetry group q, and therefore 
fall into two inequivalent orbits of equivalent (i. e., q
conjugate) pOints. 
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Note that in order to get real symmetry breaking 
solutions and at the same time a Hermitian Lagrangian 
we are forced to take m2 <0; hence our Lagrangian (5) 
cannot be viewed as the sum of a free and an interacting 
term. 16 

In the following, we shall consider the residual in
variance and the mass spectrum associated with the 
broken solutions given above. As to the solution (A), 
the residual symmetry group is an SU(2) group with 
generators 

XI=E1i,.M}k+TI, (i,j,k=1,2,3), 

where M and T .lire the generators of the Lorentz and 
of the isospin group, respectively: This group acts on 
both the isospin and space variables, rotating them 
simultaneously, so to speak, through the same angle. 
This exhibits the occurrence of the combined breakdown 
of the Lorentz and of the internal symmetry: the break
ing of the Lorentz invariance cannot be avoided if the 
internal symmetry breaks spontaneously, which agrees 
with the general argument of Sec. II. In addition, the 
model predicts some "mixing" between the spatial and 
the internal variables. As to the mass spectrum, this 
is given by the eigenvalues of the matrix 

M/'A;n,"_[ 1)2£.t J 
- 1)V~1)V:J v stationary, 

which, after some computations, are 

(a) 2J.1.2 (simple), 

(b) - J.l.2 (degeneracy 5), 

(c) zero (degeneracy 6). 

Here, the eigenvectors associated with (c) play the role 
of Goldstone particles, 7 as expected. 

As to the solution B, the breaking of the symmetry 
is here even more drastiC, as the residual symmetry 
group is abelian, namely the direct product of 0(1, 1) 
with SO(2), with generators ~3 and T3 +MI2

, respec
tively. The same considerations as before apply, and, 
regarding the mass matrix, the eigenvalues are 

(a) 2 J.l.2 
(b) - 2J.1.2 
(c) J.J.2 
(d) zero 

(simple), 
(degeneracy 2), 
(degeneracy 2), 
(degeneracy 7). 

IV. FINAL REMARKS 

As we have already mentioned, our results show two 
relevant features, namely, the large breaking of the 
Lorentz invariance induced by the spontaneous break
down of the internal symmetry, and the mixing of spatial 
and internal transformations in the residual invariance 
group. 

There are some other pOints which deserve mention. 
We have found, for instance, that the masses of our 
multiplet turn out to be independent of the "coupling 
constant" g. This amounts to say that the size of the 
mass splitting does not depend on the size of the inter
action term (if only not zero) in the Lagrangian (5). 
Therefore, . the constant g plays a very peculiar role: 
it is a sort of "catalyst" for the occurrence of the 
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spontaneous breakdown. The existence of such quantities 
seems to be a quite general feature of the spontaneously 
broken symmetries. 

Another interesting point is that both solutions of Eq. 
(6) are actually unstable, due to the occurrence of 
negative eigenvalues of the squared mass operator. A 
similar situation has been already observed in Ref. 7, 
this result being possibly related to the dynamical 
approximations involved with the Lagrangian formalism. 

To conclude, a few words on the breakdown of the 
Lorentz invariance. The occurrence of such breakdown 
is of course a rather disturbing feature, yet, the 
spontaneous breakdown of the internal symmetry when 
vector or spinor particles are involved is generally 
assumed in the literature (see, for instance, the case of 
the w -1> mixing, 17,18,12 or the chiral symmetries. 14,19) 

For spinor particles, this situation has been investi
gated by Swieca. 20 In the general case, our results 
(Sec. II) indicate that a possible way to avoid break
downs of the Lorentz group is to start with a reducible 
representation of this group, containing in particular 
some one-dimensional representations. In terms of the 
Lagrangian formalism, this amounts to say that one 
should consider Lagrangian functions depending not only 
on nonscalar fields (e.g., vector fields VI, as in our 
model), but also on some scalar fields S, both V and S 
transforming under some representation of the internal 
symmetry group. In this way, spontaneous breakdown 
of the internal symmetry group is introduced by assum
ing that some of the fields S have non vanishing vacuum 
expectation values 

(n,S n)*o 

and that all the vector (and in general nonscalar) fields 
have VEV's equal to zero: 

(n, Vn)=o. 

The latter condition prevents the breakdown of the 
Lorentz invariance, whereas the former ensures the 
breakdown of the internal symmetry. The effects of 
this appear not only in the multiplet of the S fields, but 
also in the other subspaces, thus giving rise to the mass 
splittings, etc., of all multiplets as imposed by the 
smaller reSidual (internal) symmetry. Roughly speaking, 
we may say that the breakdown is spontaneous in the 
subspace of the S fields, and is induced in the others; 
in fact, we can note that in this way the Goldstone parti
cles belong exactly to the subspace of the S fields. An 
approach of this type has been already used in the litera
ture, with remarkable physical results. 14,19 
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.APPENDIX 

We give a brief outline of the proofs needed in order 
to establish the results announced in Sec. III. To start 
with, some general results: 
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PropOSition A1: Let (E,g) an m-dimensional real 
Euclidean space E provided with a pseudometric g (real 
symmetric bilinear form on E, not necessarily positive 
definite). Let the product of two matrices T, S over E 
be defined by 

(T, S)~ = T~ S~ = T"PgPA S~. 

Then if a matrix T satisfies the equation P(T) = 0 (P 
being an arbitrary polynomial) with simple roots, T has 
a basis of eigenvectors. 

Proof: Standard, apart from the occurrence of g: the 
decompOSition of any vector vEE into eigenvectors of 
T: V=6V(a) is done by putting 

v (a) = [Q(a)(T)/Q (a)(A(a» lv, 
where A(a) are the roots of P(z) = 0, and Q (a) is such 
that P(T) = (T - A(a~) Q(a)(T) = 0. 

Proposition A2: If (E, g) is as above, and T is a real 
symmetric matrix with real eigenvalues, then the eigen
vectors of T can be chosen to be real, and eigenvectors 
belonging to different eigenvalues are orthogonal with 
respect to g. The proof is trivial, as it mimics the 
standard one. 

An easy consequence of the above propositions21 is: 

PropOSition A3: Let (E, g) be as above. Then a matrix 
T which satisfies both the hypotheSiS of Propositions 
Al and A2 can be diagonalized by means of a g-preserv
ing matrix. 

Let us now turn back to Eq. (6) 

which, when written explicitly, reads 

m 2V lA +~(V~ vj"vjA _ VIAVj"V~) =0. 

Multiplying by V~ and summing over 1 we get 

m2T~ + g2(T v .. T"A - T~ T~) = 0, 

where 

Using the above Propositions we may diagonalize T (its 
eigenvalues, to, t 1 , t2 , ts are real and positive in view 
of the reality of the V's) and obtain the following 
equations: 

to(m 2 +g2(t1 +t2 +ts» =0, 

tj(-m2+g2(tj+to-t1-t2-tS»=0, i=l, 2, 3. 

Apart from the trivial (zero) solution, there are only 
two solutions of the above equation, namely 

(a) to=O, t1=t2=tS=-(m2/2g2), 

(b) to=O, only one of the t/s equal to zero, the re
maining two equal to _ (m 2 /g 2

). 

These solutions correspond precisely to the solutions 
(A), (B), given in Sec. III . 

As to the mass spectrum, we give the explicit form 
for the mass matrix and for the corresponding eigen
vectors (the entries of the matrix are labeled in the 
order V lO

, ~o, vso, Vll
, V 2

\ ••• ) 
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Case (A) _m-2M 

0 0 
0 0 0 0-20 0 
0 1 0 1 0 0 0 

1 0 0 1 0 0 0 1 
==2" 

010 1 0 0 0 0 0 
0 -20 0 000 o 0-2 

0 0 0 001 010 

0 0 1 000 1 0 0 
000 001 0 1 0 
-20 0 0-20 0 0 0 

The eigenvectors are 

(a) Vll + ~ + Vl3 with eigenvalue _ 2m2 • 

(b) V12 + V21; V13 + VII; V23 + Vl2; V" _ V22 ; V" _ VIS, 
with eigenvalue + m 2

• 

(c) V lO ; V20; Vlo; V 12 _ V21; V23 _ Vl2, '011 _ V13 

with eigenvalue O. 

Case (B) - m-2M 

0 0 0 
0 0 0 0 0 0 
0 0 1 

0 0 0 0-20 
0 0 1 0 1 0 0 0 

0 0 0 0 0 0 

0 0 1 0 0 
0 -200 0 0 0 0 

000 0 0 0 
0 0 0 

0 0 0 0 o 0 
0 o -1 
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The eigenvectors are 

(a) V" + V22 with eigenvalue _ 2m2 • 

(b) V1
2 + V21, Va _ V22 with eigenvalue + 2m2 • 

(c) Vlo, Vl3 with eigenvalue _ m2 • 

(d) V10
; V20 ; V13; V2S; VII; Vl2; V12 _ V21 with 

eigenvalue O. 
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This paper studies the symmetries of a function which generalizes the 3; coefficients of SU(2) and of 
SU( I, I) involving discrete unitary representations. As a by-product of the analysis, the symmetries 
of the SU(I,I) coefficient are obtained. 

INTRODUCTION 

Recent works l -4 have pointed out a deep connection 
between SU(l, 1) and SU(2) unitary representations, and 
between corresponding Clebsch-Gordan coefficients. 
This connection can be best visualized through analytic 
continuation in the representation parameters in such a 
way that discrete and continuous representations appear 
essentially on the same footing. 1,3 In this respect one 
might say that the SU(l, 1) case can be regarded as a 
suitable exten~ion of SU(2). 

On the other hand, in the copious literature about 
quantum angular momenta there exists an extension5• 7 

of SU(2) representations, coupling and recoupling coef
ficients whose connection with the aforementioned unify
ing treatment of SU(2) and SU(l, 1) has not yet been 
clarified. We mean the generalization to values'} of the 
representation parameters of SU(2) related to the usual 
ones by j = - j - 1. 

In our work we shall show that there exists a highly 
symmetrical structure which contains all these exten
sions in so far as discrete representations are con
sidered. In so doing, the relations between SU(2) and 
SU(l,l) coupling and recoupling coefficients will appear 
as particular instances of the symmetries of the struc
ture. Moreover, we shall obtain as a byproduct of our 
analysis a complete characterization of the symmetries 
of SU(l, 1) coefficients with discrete representations. 

In the particular case of 6j-coefficients, our work 
will contribute to the solution of a problem which arose 
recently. In fact new symmetries of the 6j of SU(2) were 
claimed to hold8; however, they are not actual sym
metries, as they violate triangular conditions. 9 In a 
forthcoming article we shall show that they are elements 
of the invariance group of the general structure. 

The present paper is entirely devoted to the 3j-coeffi
cient. In Secs. 1 and 2 we introduce a set of real varia
bles which are particularly suited to express the 3j of 
SU(2) in terms of entire functions proportional to hy-
per geometric series 3F2(u, v, w; y, z; 1). The restriction 
of these variables to a discrete set of values imposed by 
SU(2) triangular conditions, suggests how to extend the 
SU(2) 3j- coefficient to a larger discrete domain R c JR(5). 

This is achieved in Sec. 3 where we consider a set of 
functions defined over R which satisfy a system of rela
tions whose role is essentially equivalent to the recur
rence relations of the aforementioned 3F2 series. These 
functions provide the extension of the 3j of SU(2) to the 
whole R and coincide-apart from a well-defined phase 

factor-with the SU(l, 1) Clebsch-Gordan coefficient in 
a suitable subregion of R; moreover, in the remaining 
portion of R, they coincide with the extension of SU(2) 
and SU(l, 1) 3j-coefficients to values - j - 1 of at least 
one angular momentum parameter j labelling SU(2), 
respectively SU(l, 1) discrete unitary representations. 
We stress that, especially when it is not explicitly 
stated, we consider only this class of SU(l, 1) 
representations. 

In Sec. 4 we study the symmetries of the generalized 
functions and find 72' 20 (= 1440) pOints in R where they 
differ by a phase factor which is explicitly determined. 
Through these symmetries the values of our generalized 
functions are known in the whole R once we know the 
SU(2) 3j-coefficient in the subregion of R characterized 
by SU(2) constraints. Furthermore, by restricting the 
analysis to SU(l, 1) subregions of R, we find 6.18 (= 108) 
symmetries of SU(l, 1) 3j-coefficients with generic dis
crete unitary representations; they are studied in detail 
in Appendix C. All symmetries of the generalized func
tions can be thought as consisting of the 72 + 108 SU(2) 
and SU(l, 1) symmetries enlarged by the transforma
tions which change at least one j into - j - 1; in fact, 
(72 + 108) . 8 = 1440. . 

Finally we show in Sec. 5 how the Regge square
symbol for the 3j of SU(2) can be generalized to our ex
tended structure; we are led to a geometric configura
tion of lines, points, and planes in JR(3). 

1. BASIC DEFINITIONS 

According to Whipple notations, 10 we shall usell the 
variables ra E JR, a E w ={O, 1, 2, 3, 4, 5} or, in short, 
r=(rO,rbr2,r3,r4,r5), restricted to a space JR(5) by 

y; ra =0. 
aftw (1. 1) 

It is also convenient to introduce the auxiliary variables 

i3ab (r)=ra-rb+1, V{a,b}cw, 

QabC(r)=ra+rb+rc+t, V{a,b,c}cw; 

(1. 2) 

(1. 3) 

lower case italic letters a, b, c, d, e, etc. will denote ele
ments of w, while the lower case Greek letters (J, T, X 
will denote subsets of w with I (J I = I TI = I X I = 3 and 
(J' = w - (J, etc. Therefore, we shall write also Q,ir) 
=i:aEara+t and, if no confUSion arises, we shall ab
breviate Qa(r) = Q a• 

Equation (1.1) entails many linear relations among 
the auxiliary variables as there are (g) = 20 different Q's 
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and (~) = 15 different /3's; we quote only the basic 
identities 

a" + aa' = 1, 'fI(J, (1. 4) 

aabc+ aatfe+ abe, + actlf= 2, (1. 5) 

where a, b, c, d, e,j is any permutation of 0, 1, 2, 3,4,5. 

In IR(5) we consider the function 

F( - i320' - /340, - /330, - i310, - /350) 

_ 3F 2(a234. 0124. a245ji320. (:340j1) 
- r( (135)r(/320)r(/340) 

where, of course, /3,,0 = /3"o(r), a = 1, 2,3,4,5, 0234 
= Q!234(r), etc. F has the following fundamental 
properties: 

(1. 6) 

1. 7 Theorem: F(- /320, - /340, - /330, - /310, - {350) is sym
metrical with respect to any perlllutation of its variables 
/3o,,(r), aE W - 0, namely, of rtz r2, r3, r4, r 5; hence we 
may write F(- /3,,0, 'fIa E W - 0). 

The proof is due to A. C. Dixon. 12 

1.8 Theorem: F is an entire function of each variable. 

Proof: See Appendix A. 

By exchanging in Eq. (1. 6) r o with any r", a E W - 0, 
one can define F(- /3ab(r) , 'fIaE W - b), 'fIbE w; owing to 
Theorem 1. 7 it is customary13 to adopt the notation 

Fp(b;r) = F(- /3ab(r) , 'fIa E W - b) 'fib E W (1. 10) 
Fn(b;r) = F(- /3"b(- r), 'fIaE W - b) , 

and to write, if no confusion arises, F,,(b), Fn(b)o These 
12 functions are linearly dependent; they satisfyt3 the 
following relations: 
sin(1T/3bc)Fp(a) 

1T r( 0abc) 

sin(1T/3Gb)Fn (a) _ F,,(b) 

1Tr( 04e') - r( 0aM, 0abe, 0ab') 
F,,(c) 

(1. 11) 

r( aaed, o"ce' aac') 

(1. 12) 

where a, b, c, d, e,j are any permutations of 0,1,2,3,4,5 
and r(XtzX2z"') =n"r(x,,). If one or more a's assume 
integer values, part of Eqs. (1.11), (1. 12) simplify re
markably; in particular, if o,,(r) is a positive integer, 
these equations implyt3: 

ia)_ (_l)it-h-l-'a 
Ila - 61-'1+1-'2+l-'a=0 (ja - j2 + Ill)! (j3 - it - 1l2) I 

n r(al ...... IUc(r) F,,(a;r) 
CEo' 

= (_l)"a'(r) n r(OI,,-cIUb(r» Fn(b;r), 
cE" 

'fIa E (J, 'fib E a', 

(1. 13) 

so that the value of both sides of Eq. (1.13) depend on 
neither a E (J, nor bE a'. These two-term relations will 
playa basic role in what follows. 

2. CONNECTION WITH THE 3i COEFFICIENT OF SU(2) 

As the 3j-coefficient of SU(2) depends upon five inde
pendent parameters, jt, Ilt, .; = 1, 2, 3, ~:=tllt = 0, the r 
variables are certainly suitable to express this coeffi
cient as shown in Ref. 3 in a similar context. It will be
come apparent in Sec. 4 that they are the right variables 
to study the symmetries of our generalized functions. 
We make the following identification: 

(
it h j3) 
Ilt 112 113 

_ ( (rt - ro - 1)/2 
- \(r2 + r3 - r4 - r 5)/2 

(r3 - r2 - 1)/2 (r5 - r4 - 1)/2 ) 
(r4 +r5 - ro - rl)/2 (ro + rl - r2 - ra)/2 

h+jg-it jg+it-h it+h-jg 
it - III h - 112 jg - 113 

a 035 - 1 at25 - 1 at34 - 1 
at45 - 1 0!013 - 1 a235 - 1 . 
O!t23 - 1 0!345 - 1 a 015 - 1 

For future convenience we remark that Eq. (2.1) 
entails 

3ro= - 3it + 1l3-1l2 - t 3rt = 3jt + 1l3-1l2 +!, 

3r2 = - 3j2 + III - 113 -!, 3ra = 3j2 + III - Ila +!, 

3r4=-3jg+1l2-llt-t 3r5=3jg+1l2-IlI+t 

(2.1) 

(2.1') 

The row- and column-sum in the Regge square-symbol14 

in Eq. (2.1) is ~:=tit = (rt +ra + r5 - ro - r2 - r4 - 3)/2 
= 0!1a5 - 2 by virtue of Eq. (1. 3). As the arguments of 
the square-symbol have to be nonnegative integers to 
fulfill SU(2) constraints, we see that o!x, 1 X n {1, 3, 5,} 
;;. 2, are restricted to assume positive integer values 
(actually 0!Ia5 > 1). 

Now we recallt5 the identity 

x {(h +jg -it)l (jt +IlI)!(j2 -1l2)! Ua +Ila)l (ja -lla)l}I/2 
(jl +j2 - ja)!(it +h +ja +l)!(it -Ilt)!(h +1l2)! 

xaF 2(ja -it -j2, Ill-it, - j2 -1l2;jg -h +Ill +1,jg- jl -1l2 +1; 1); (2.2) 

if in Eq. (2.2) we expressj's and Il'S in terms of O!'s 
according to Eq. (2. 1), and make use of definition (1. 10) 
with a = 4, we obtain 

(
it j2 i3) 
III 112 Ila 

J. Math. Phys., Vol. 15, No.9, September 1974 

where ro - r2 is integer, as ro - r2 = a 035 - 0!235' Equation 
(2.3) is the starting point of our generalization. 

2.4. Definition: For any (J ={a, b, c}c W let us denote 
with R" = Rabc the discrete set of points r E IR(5) such that 
O!,,(r) - 1 and aT(r), 'fiT: la n 1'1 = 2 are positive integers; 
by virtue of Eq. (1.1), the remaining ax: 0.,; IXn al .,; 1, 
assume nonpositive integer values in R". Clearly there 
are 20 different R,,'s and we also define their joining 
R=U"R". 
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2.5. Lemma: R"t-(/),Va; R"nRT=(/), vat-To The first 
statement is true because it holds when a ={1, 3, 5} by 
virtue of Eq. (2.3). As for the second statement, let 
rER,,: (1) an Tt-(/); thenanrt-(/), a'n T't-(/). Let 
aEO"n T', bEO"n T, cEO"'n T'; from Definition 2.4 it 
follows that aabe(r) > 0, so that r i RT because {a, b, c}n T 
=b. (2) O"n T=(/); then ~(r»Ovx: ixnO"i =2 and riRT 
because IXn TI =1.16 

2.6. Remark: In Revery f3ab is integer; therefore 
aabe + f3ab + 2f3ea - 3 = 3re + t is integer, so that 6re + 1 = 0 
mod 2, VCEW. This yields 2~aE"ra+1=0 mod 2, VO" and 
ra-rb=3ra+3rb+1 mod 2, vat-b. These relations will 
prove useful in what follows to compute phase factors. 

2.7. Lemma: Let a EO", b EO"'; in rER", Fp(a) and 
Fn(b) have a zero of the second order; moreover, 

(- 1)3Ta+1 12{ n r(l _ a.)} -1 F (a) 
etdEa' ae~ n 

do not depend on b, respectively a, and Fn(a), F,,(b) are 
related by 

{ n r(aabJ}Fn(a) = (- l)"'Ia'-bIU a{ n r(l- aabe)}F,,(b). 
eEa-a eEa'-b 

(2.8) 
Proof: Set 0" = {a, e,j}, 0"' ={b,g, h} and let a elb assume 

a positive integer value; Eq. (1. 13) yields 

r(alba , albg , albh)Fp(e) = r(aeba , a ebg , aebh)F,,(f) 

= r(aela, aelg, aelh)Fp(b) 

= (- l)"'aghr(aaeh aafb, aaeb)Fn(a) 

= (-l)"'aghr(ageh aglb, ageb)F (g) 

= (- l)"'aghr(ahel' a hfb , aheb)F (h). 
(2.9) 

As rERael all r's which multiply Fp(b), Fn(a) are finite; 
on the contrary, in front of Fp(e), Fp(f) , Fn(g) , Fn(h) 
there are two exploding r's which must be matched by a 
second order zero of these functions. As Fn, Fp are en
tire functions of each variable, the relation 
r(aelg, aelh)Fp(b) = (- l)"'aghr(aabh aabe)Fn(a) does not de
pend upon along which direction the point r E Ra is ap
proached in E(5). The proof is completed by making 
aelg positive integer and by comparing Fp(b) to Fp(g) 
through their relation with Fn(a). 

2.10. Corollary: For any given 0", the functions 

cpp(b, r) = (_1)3Tb-1/2+"'a{Pa(r)}112{ n r(dbed(r)}-l Fp(b;r), 
c,dE" 

bE 0"', 

CPn(a;r) = (- 1)3Ta+1 12{p (r)}i 12{ n r(l- a .(r)}-l F (a'r) 
" c, dEa' ac" n" 

aEO", 

where p"=nVx:JXn,,J"2r(aX)' coincide if rER,,:CPn(a;r) 
= cp,,(b;r) =' cp(O";r), va EO", b EO"'. 

2.11. Remark: We notice that in the particular case 
0" ={1, 3, 5}, recalling Eq. (2.3), we have from 2.10 

(~11 ~22 ~3J= cp({l, 3, 5};r). (2.12) 
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It is straightforward to deduce from 2. 10 and from Eq. 
(2. 5) the symmetries of the SU(2) 3j-coefficient. In fact, 
it is clearly invariant under (1) permutations of ro, r2, r4; 
(2) permutations of rb r3, r 5; (3) exchange of r o, r2, r4 
with rb r3, r5 and sign inversion of all r a, a E w. This 
transformation multiplies the coefficient by (- 1)"'135 be
cause cpp(b;r), bE {O, 2, 4}, transforms into 

(_1t3ra-1/2+"'135{p (- r)}1/2{ n r(O' (- r»}-lF (a'- r) 024 etdEa' act! p , 

for some a E{1, 3, 5}, and P 024(- r) = P 135(r) , aacd(- r) 
= 1- aacd(r), Fp(a;- r) = Fn(a;r) according to definition 
(1. 10) These symmetries correspond to permutations of 
rows and (or) columns of the Regge symbol, and to re
flection with respect to the main diagonal. 

One way to generalize Eq. (2. 3) is to continue analyti
cally cpp(b;r) , cpn(a;r) , bE{0,2,4}, aE{1,3,5}, from 
r E R135 to r' E R - R 135• In so doing one should take into 
account that Fp(b;r'), Fn(a;r') develop a zero of the 
second order, according to 2.7; but it is easy to check 
that a pole of the second order is provided at r' by the 
factors which multiply FI>' Fn in CPP' CPn' This suggests 
that the analytic extension of cP", CPn to the entire R can 
be devised and in Ref. 2 a Pochhammer double-integral 
representation of 3F2 has been used for this purpose. 
However, we feel that this procedure-which is powerful 
enough to cover even the continuous representations of 
SU(l, l)-in so far as the discrete ones are considered, 
does not clarify the symmetry of the underlying al
gebraic structure; for this reason we shall develop a 
different method. 

Beforehand we want to analyze the meaning of each 
R" from the point of view of the angular momentum 
parameters. More precisely, we associate to Rabe the 
square- symbol 

a dbe - 1 a eac -1 alab -1 
[a,b,c]=' alea -1 a dab -1 aebe -1 (2.13) 

a eab -1 albe -1 a dca -1 

where {d, e,j}= W - {a, b, c}; the row and column sum is 
aabe - 2 and, from Definition 2.4, in Rabe all variables 
which appear in Eq. (2.13) in addition to aabe - 1 are 
nonnegative integers. Sticking to the identification 
specified by Eq. (2.1) amongj's, IJ.'S, and r, we want 
to see what inequalities hold true for j's, IJ.'S in R abe• 

2.14. If Rabe=R135 we obviously find the SU(2) 
constraints: 

jt ;, 0 

I I 
~=1,2,3, 

jt;' IJ.t 

it +h+ia;' 0, 

(2. 14a) 

(2. 14b) 

(2. 14c) 

(2. 14d) 

where Eq. (2. 14d), which we have borrowed from Ref. 
17, implies the well-known triangular relations, be
cause 1J.1 + 1J.2 + 1J.3 = 0 provides the only constraint over 
the sign of IJ.' S. 

2.15. Let r belong to anyone of R 035 , R 125 , R 134 ; 
R 124, R 034 , R 025 ; R 024' In each case we find the same in
equalities of Eqs. (2.14) providedjt is replaced by 
-jt-I, V~E:=:, where 
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E = {1} {2} {3} {2,3} {3,1} {l,2} {l, 2, 3} 

For instance, if r E R 024 , a024 = - it - j2 - j3 - 1 ~ 2 im
plies (-it-1)+(-h-1)+(-ia-1)~0, etc. Therefore, 
the extension of the 3j of SU(2) to these other regions of 
R, where the SU(2) inequalities are satisfied but at least 
one j assumes a negative value, is just the extension 
considered in Refs. 5,6,7. 

2.16. Finally, if r belongs to one of the remaining 
Ra's, setting for convenienceJf=j,+-k, ~=1,2,3, we find 

(2. 16a) 

~I 2 3
1 

(Iitl +t)+~1 3 11 (li21 +t)+ 1%1%21 (li31 +t)~o, 
j.L2j.L3 j.L3j.L1 ,..1,..2 

(2. 16b) 

and in each region the sign of only one i and of all j.L' s 
is specified as follows: 

=1 2 3 
r E R145 Rot3 R235: 

R 123 R 345 R ot5 : 

R023 R 245 R 014 : 
R045 R012 R 234 : 

j.Lf:;;; -1, 
j.Lf ~ +1, 
j.Lf ~ +1, 
j.Lf :;;; - 1, 

j.L~ ~ +t, 
j.L~:;;;- t, 
j.L~:;;;-t 
j.L~ ~ +t, 

(2. 16c) 

1JE{1,2,3}-~. Here we have quoted the stronger in
equalities; notice that Eq. (2. 16b) provides only one 
relation for each Ra. It is easily checked (see Ref. 2) 
that inside the subregions of R 023 , R 245 , R 014 , R 045 , R 012 , R234 
wherei,:;;;t, ~=1,2,3, the parametersj's, j.L'S satisfy 
the inequalitites which characterize SU(1, 1) unitary dis
crete representations having a nonvanishing 3j-coeffi
cient. The remaining subregions of these Ra's, as well 
as the whole of R 145, R 013' R 235 , R 123 , R 345 , R 015 , give rise 
to the same SU(1, 1) inequalities with sign inversion of 
at least one j~ namely they correspond to the same ex
tension18 as the one considered in 2. 15 for the SU(2) 
case. 

For future convenience we denote with Ra, C1 ={O, 1, 2}, 
{o, 1, 4}, {2, 3, 4}, {2, 3, o}, {4, 5, o}, {4, 5, 2} the subset of 
Rawhereif:;;;+t, ~=1,2,3, and write R(SU(1, 1» 
=Ua Ra· 

3. THE GENERALIZED FUNCTIONS 

In this section we shall construct a set of functions in 
R which coincide with the 3j-coefficient of SU(2) in R 135 ; 
it will turn out that in R(SU(1, 1» these functions coin
cide within a phase with the 3j of SU(1, 1) which couples 
discrete unitary representations. 

3.1. Definition: We introduce the step function ,9 (C1;r), 
Vr E R, such that ,9(C1, r) = 1 if O'a(r) > 0, while ,9 (C1;r) = 0 
if aa(r) :;;; 0; notice that ,9 (C1;r) +,9(C1' ;r) = 1 'fIC1. 

To simplify our notations, it is very convenient to 
use the function 

(3.2a) 

As we are concerned with integer values of aa's, Eq. 
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(3.2a) amounts to modify the r-function by replacing its 
infinite values at the poles with the corresponding 
residues; this procedure has been used in Refs. 5,6,7 
to extend the 3j of SU(2) to negative values of j's. Eq. 
(3.2a) must be implemented with the following phase 
prescription: 

{r( a o(r»}1 /2 = exp{ - ti1T,9(C1' ;r) a",(r)} I r( Qo(r» 1112. 

This is enough for our purposes as we shall not run into 
noninteger powers of r's different from t. 

We notice that 

r(aa(r»f( a",(r» 

= exp{ - i1T[,9(C1;r)O'o(r) + ,9(C1' ;r)a",(r)]}. (3.3) 

Moreover, the following useful identity holds 'fI a E w: 

(1/2) L; {,9(T;r)aT(r)+,9(T';r)a.,.(r)}=-t mod 2. 
TCw..,. 

(3.4) 

By means of definition (3. 2) we may cast the functions 
({J,,(b;r) , ({In(a;r), rERa , aEC1, bEC1', defined in 2.10, 
into a more symmetrical form; recalling 2.6,. we obtain 
easily 

((J,,(b;r) = exp{i1T(- %rb + t)}{Qp(b;r)}1 /2 F,,(b;r), bE C1', 

(3. 5a) 

((In(a;r) = exp{i1T[%ra - t + a",(r) ]}{Qn(a;r}}i /2 Fn(a;r), a EC1, 

(2.5b) 

where 

Q,,(a;r) = TI r(aT(r» (3.5c) 
TCW..,. 

Qn(a;r) = TI r(1 - aT(r». (3. 5d) 
TCW"" 

We postulate now a set of equations whose solution 
will provide the basic ingredients of our construction. 
In fact, the functions F,,(a;r), Fn(a;r), a E w, which 
appear as unknown in these equations, can be chosen in 
such a way that-upon multiplication by suitable factors 
as specified in Definition 3.H-they yield the desired 
generalized functions. The equations read, if r ERa, 

(3.6) 

'fiT: 2:;;; 1 Tn C11 :;;; 3, and 'fIaE T', bET. These relations
apart from the phase (-1)1~I-are obtained from Eq. 
(1. 13) by considering in turn each aT(r) > 0 and by re
placing r(a) with r(a). 

3.7. Lemma: Equations (3.6) are compatible and ad
mit the following solutions at r ERa: 

F,,(a;r) = F,,(a;r), 'fIa E C1', 

FIl(a;r) = Fn(a;r) , 'fIaEC1, 

F,,(b;r) = (_1) 3ra+1/ 2 TI r(aabc(r» Fn(a;r) , 
cEw·la,b) 

'fIbEC1, aEC1- b; 

(3.8a) 

(3.8b) 

(3.8c) 
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Fn(b;r) = (_l)3ra-l/2 n r(l- a"bc(r» F,,(a;r), 
cEw-{a,b} 

'fib Ea', aEa'- b. (3.8d) 

Proof: We delete the proof of consistency to Appendix 
B. Here we show that there are equations of the system 
(3.6) which are satisfied by the choice (3. 8). Let a E a 
n T', bE a' n T in (3.6); this implies la n TI = 2 and 
i = (an T) U a, T = (an T) ubi therefore, if C E T', we have 
a'T-bIUc= a (an 'nu" > 0 and if C E T : 1 ({ T- c}U a) n 0'1 = 2, 
so that a 'T-cIU " > O. According to definition (3.2), it 
follows that f(ax) = r(ax) for every X involved in (3. 6)i 
moreover, r(a(anT)U,,) appearf!, on both sides of (3.6) 
~nd 01,.= a {o'-bIU". Therefore, F,,(b;r), bE a', and 
Fn(air), a EO', satisfy Eq. (2.8). As for Eqs. (3.8. c, d), 
they follow from (3.8. a, b) and from Eqs. (Bib), (Blc) 
of Appendix B. 

Remark: The consistency of Eqs. (3. 6) shows up also 
from the fact that the rhs of (3. 8c), (3.8d) is actually 
independent of a EO', respectively a E a'. In fact, we 
may write these equations as follows: 

~ • { } (_1)3r.,+1/2Fn(air) 
F,,(b,r) = r(aa<r» n r(abcd(r» r(l ( » 

cEo' nc dEo' - a.,ed r 
"Eo-I> • 

'fib EO', aEa- bi (3.9a) 

- {n }(_1)3re_l/2F,,(e ir) 
Fn(gi r ) = r(l - ao'(r» _ r(l - a,.e,,(r» n r( (»' 

cEa e dEa aeed r 
aEo'-I/ ' 

'fIgEa', eEa'-g; (3.9b) 

then we recall 2.7 and realize that Eqs. (3.9a), (3.9b) 
hold also when a = b, e = g. In this particular case we 
know from Appendix B that, if r E R", then 

F,,(b;r) = - Qn(b;r)Fn(bir), 'fib EO', (3. lOa) 

Fn(g;r) = - Q,,(g;r)F,,(g;r), 'fIgE a'. (3. lOb) 

3.11. Definition: rER, aEW, we set 

+,,(a;r) = exp{i1f[ 1P,,(r) +A(air)]}{Q,,(air)}1/2 F,,(a;r), (3.11a) 

+n(a;r) = exp{i1f[v,,(r) +A(a;r)]}{Qn(air)}l /2 Fn(a;r), (3.l1b) 

where 

(3. Hc) 

(3. 11 d) 

A(air ) 

= ~ :6 {a((a, b, c};r)aabc(r) +.a(w - {a, b, c};r)a",_Ia. b,c}(r)}, 
IHEX 

X={1,3,5} ifaE{0,2,4}i x={0,2,4} ifaE{I,3,5}. 

(3. lie) 

This choice of phase factors will be justified a posteri
ori as we shall show in 3. 13 that it forces all +/s, 
wn's to coincide in R135 with the SU(2) 3j-coefficienti 
this clarifies also the privileged role of R 135• 

3. 12. Theorem: For any a, recalling the definition 
of cp(a;r) given in 20 10, if r E R", we have 
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W", n(a;r)::: exp{i1fW' ".n(a;r)}cp(a;r), 

where 

W'n(a;r) = v,,(r)-!r.,+i+ao'(r)+A(air), mod 2, if aEa 

= v,,(r) +!ra+~+A(air), mod 2, if aEa', (3. 12a) 

W',,(a;r) - W'n(a;r) = o"E(an{\l,2,4})U (o'nU,3,5}), mod 20 

(3.l2b) 
Here, O"ET= 1 if a E T, OaET= ° if act T. 

Proof: Let aEa; then, from Eq. (3.8a), Fn(a;r) 
=Pn(a;r). Therefore, comparing Eqs. (3.1lb), (3.5b), 
we obtain (3. l2a) for the case a Ea. On the other hand, 
if aEa', we may use Eq. (3. lOb) so that (3.1lb) 
becomes 

~n(a;r) = exp{i1f[ v,,(r) +A(air) + 1 ]}{Qn(a;rW /2Q,,{air)F(a;r). 

Now notice that 

Q,,(a;r)Qn(a;r) = n r(a,.(r)}I'(a,.(r»; 
TCw-a 

therefore, from Eqs. (3.3), (3.4), (3.8a) we obtain 

wn(a;r) = exp{i1f(va(r) +A(a;r) - tl}{Qp(a;r)}i /2 F,,(a;r) 

and by comparison with Eq. (3.5a), we get (3.l2a) in 
the case aEa'. Then consider the ratio +,,(a;r)/~n(a;r); 
from 3. 11 we have 

+,,(a;r) XP{' [,J, ( ) ( )]}{Q,,(air)}1/2 Fp(air) 
--- = e t1f '1'4 r - Va r -(--) ~ ( ). +n(a;r) Qn air Fn air 

Using Eqs. (3.l0), (3.3), (3.4) we deduce 

{ Qp(a;r)}1/2 ~e(a;r) = _ {Q (a'r)Q (a'rW /2-6aEo' 
Qn(ai r ) Fn(a;r) ", n, 

= exp ii(OaEo'- OaE") , 

which leads to (3.l2b) if we recall (3.1lc, d). 

3.13. Corollary: If rERm, then: +p(air ) = +n(ai r ) 
= ({tt t22 t3

S
) , 'fIa E w, provided we make the identifications 

specified by Eq. (2.1)0 

In fact, by direct computation of A(a;r), Eq. (3.l2a) 
yields for any a E W 

't'n(a;r) =3 :6 rb+l, mod 2, if lan{1,3,5}1=0, 
bE u.s, 51 

(3.l4a) 

= 3r o'n {O, 2,4} + OcEan (O.2, 41> 

mod 2, iflan{I,3,5}1=1, 

(3.l4b) 

mod 2, if Ian {I, 3, 5}1 = 2, 

(3.l4c) 

=0, mod 2, if lan{1,3,5}1=3. 

(3.l4d) 

Therefore, if a ={l, 3, 5}, we get from Eq. (3.l2b): 
W',,(a;r) = W'n(ai r ) , 'fIa E w, and we have just to recall 2.12. 

3.15. Corollary: If rER(SU(l, 1», then w,,(a;r), 
wn(a;r), 'fIaE w, coincide-apart from a phase factor-
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with the SU(1, 1) 3j-coefficient involving the discrete 
unitary representations j t, ~ = 1, 2, 3, specified by Eq. 
(2.1). 

In fact, by means of Dougall's formula, it is 
straightforward to check that the Clebsch-Gordan co
efficient of SU(l, 1) with discrete unitary representa
tions ct\ t; .~~, divided by ../- 2ja -1, as computed in 
Ref. 2, is related to <p(O';r) as follows: 

Cit 12 la 
"1 "2 ·"3 

../-213- 1 

= (_1)3J'2+1/2<p({2, 3,4};r) [Eq. (3.11), Ref. 2] 

= (_1) 3ro+1/2<p({0, 1, 4};r) [Eq. (3.15), Ref. 2] 

= (_1)r4-r5<p{{0, 1, 2};r) [Eqs. (3.18), (3. 20), Ref. 2] 

= (_1)r4-r 5<p({0, 2, 3};r) [Eqs. (3.17), (3.19), Ref. 2], 

and we guess 

= (_1)3r2+1/2<p({2, 4, 5};r) 

= (_1)aro+112<p({O, 4, 5};r). 

To complete the argument, we recall 3.12. 

Remarks: At this stage it is clear, in the light of 
definition (3. 2a), that within the regions specified in 
2.15 all .n's, .p's coincide-apart from a possible 
phase-with one of the extensions considered in Refs. 
5,6,7 of the SU(2) 3j-coefficient. Similarly, inside the 
regions considered in 2.16 which are not proper SU(1, 1) 
regions, these functions coincide-always within a 
phase-with SU(l, 1) 3}-coefficients in which at least 
one} is replaced by -} - 1. 

All ~p.'s, ~n's are acceptable generalizations; they 
coincide essentially with the GWC of Ref. 2 and with the 
3}-symbol of Ref. 3 provided the corresponding varia
bles are restricted to R through a suitable limiting 
procedure. 

4. SYMMETRI ES 

To study the symmetries of ./s, .n's it is con
venient to consider a suitable linear combination .(r) 
of these functions. We choose 

~(r) =t :B [.p(a;r) +~n(a;r) 
"EU,3,5) 

(4.1) 

As will soon be clear, 1~(r)1 = I.p(a;r) I = l~n(a;r)l, 
YaEw, YrER; moreover, the phase of .(r) keeps un
changed the features which are shared by the phases of 
all ~,.'s, ~n's, as will be specified in 4. 2. These condi
tions do not determine .(r) uniquely; the additional 
degree of freedom might be exploited to produce a func
tion which enjoys other properties shared by SU(2), 
SU(t,1) 3}-coefficients. Here we shall not enter into 
these questions as our purpose is merely to unify the 
analysis of the symmetries of ~ I>. n' s. 

4.2. Lemma: ~(r) = exp{iri(r)}cp(O';r) if r E R 17, where 
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.(r) = 3 L; r",mod2, if\O'n{1,3,5}\=0, 
aE: 11, 3, 5) 

=3ro'!l{O.2.41, mod 2, if jO'n{1,3,5}\=t, 

= 3:B r" + t, mod 2, if 100n {t, 3, 5}\ = 2, 
ClEan 11,3,5) 

=0, mod 2. if \O'n{I,3,5}1=3. 

These formulas can be checked by direct computation 
of .(r) by means of Eq. (3.14) and 3. 12. 

4.3. Remark: It is clear that through Eq. (4.1) we 
made a sort of average over the phases of ~p's, ~'s, 
without changing the phase when r E R 135 ; therefore, 
~(r) coincides with the 3} of SU(2) in R 135• 

4. 4. Definition: We consider now a group G(3}) of 
automorphisms P12 of R onto itself, provided by the 
following transformation: (1) permutations Pi2 of com
ponents of r(1) E Rwhich send r(i) into a different point 
r!2)ER; (2) permutations of components of r U > and 
Sign inversion of all r!1), Ya E w; these transformations, 
which we denote with Pi2, send r(t) into a point r~2>ER. 
Clearly, G(3}) -S6® S2 and its order is 61 . 2 (= 1440). 

4.5. Remark: It is worth noticing that the elements 
of G(3}) can be partitioned into 20 subsets of 31 . 3! . 2 
(= 72) elements each. In fact, if r U ) E Rat' there are 
72 different P 12 E G(3}) which send r<i) into correspond
ingly different points r(2) E R"2' for any given 0'2' For 
instance, if 0'1 = {I, 3, 5}, we have r(2) 
= (r(2) r(2) r(2) r(2) r(2) r(2» E R provl'ded we set 

4 , b , c , 4 , e , f ak' 
either (r!2>, r~2), r~2» = S3(r~t), r~i), r~1l}, (r~2), r!2), rt) 
= Sa(r~1), r~1), rio), or (r!2), r~2 >, r~2» = S3(- r~1), - r2t) , 
-r11», (r~2>,r!2>,r}2»=S3(-rp>,r~1),-r~1), where S3 
denotes any element of the permutation group over 3 
objects and (u, v, w, •.. ) denotes an ordered set. In the 
particular case 0'1 =0'2 ={1, 3, 5}, recalling 2.11, we see 
that the corresponding 72 elements of G(3j) coincide with 
the symmetries of the SU(2) 3}-coefficient. 

4.6. Remark: If r H ) E Ra1 and r(2) = P 12r(t) E R172, we 
want to point out that (1) P12 =Pi2 implies r!2) = ri1), so 
that if aE0'2, then bEO't and if aEO'~ then bEO'i; (2) P12 
=Pi2 implies r,!2> =- r~1l, so that, if aE0'2, then b EO'i, 
while if a E (I'~, then b EO' l' These remarks stem directly 
from Definition 2.4. 

4.7. Theorem: Yr(1)ERat. YPf2EG(3}), setting r!2) 
= 112r{i), we have ~(r~2» = exp{i1rW"'(r(1), r!2»~(r(1», 
where w+(r<t>, r!2» = w(r!2» - w(r(1», and -r(r(t), r~2» 
= w(r{2) - w(r(!) + aa1 (r(1l). 

Proof: (1) Pi2: According to 4.6, choose any a E (1'2 and 
bE0'1 such that (r!2»,,=r~1); from 4. 2 we have ~(r!2» 
= exp{i1rw(r!2»}<p(0'2;r!2». Recalling 2.10 and Eq. (3. 5b), 
we deduce 

<p(0'2;r!2» = <pn(a;r!2» 

= exp{i1r[~(r!2»a - t + aa~(r!2» ]}Qn(a;r!2»Fn(a;r!2»; 

then it is easily cheeked that a~(r!2») = aoi (ru », 
Qn(a;r!2» = Qn(bjr(1», Fn(a;r!2» = Fn(b;rU}, where the last 
identity stems from Eqs. (1.10). Therefore <p(0'2;r!2}) 

<p(0'1;r(1) = exp{- iri(r(1»~(r(1». 

(2) Pi2: Choose any aE 0'2, b EO'f such that (r:2»., 
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~ca 
FIG. 1. Geometric representation of Regge symbol [a, b, cl. 

= - r~1l; arguing as in (1), we have now Qn(a;r~2» 
= Qp{b;r(1) and, recalling Eqs. (1. 10), Fn(a;r~2» 
= F(- (3ca( .... r~2l), 'fie E W - a) = F(- (3cb(r(1» , 'fie E W - b) 
= Fp(bjr(1l). Therefore, taking into account Eq. (3. 5a), 
and noting that by virtue of 4. 6 0!~(r~2l) =: i + LCE~(r~2l)c 
= 1. _ '" r(1 l = 1 _ a (r<1l) we get rn«(J 'r(2l) =: rn (a'r(2l) 2 ",aEC71 d at, Y 2, - Yn'. 

= exp{ilTO!al(r(1l)}C{Jp(b;r(1l) == exp{ilT[aal(r<1l) - 'i'(r(1l)]} 
x~(r<1l). 

4.8. Corollary: For any given (J, the numerical tabula
tion of ~(r), r ERa, provides the complete tabulation of 
~(r), 'firER. 

This follows from 4.7 and from the remark that 'fIr(2l 
E RC72. there are r(1) E R C7, P12 E G(3j) such that r(2l 
== P I2r(1). 

In particular, the existing tables of SU(2) 3j-coeffi
cients cover a portion not only of R t35 , but of every Ra, 

as, taking any r(1) ER 135 , we have 'fIPh EG(3j): 

~(r(2) P.' rIo) =: exp{iri"'(r<1) r(2l)} (it h is) 
;, 12 ';, Ji,1 Ji, 2 Ji, 3 ' 

wherej's, Ji,'S are given in terms of r(1l by Eqs. (2.1'). 
For the sake of possible convenience, we quote the 
phases 'i'''(mod 2) in the following table for each possible 
(J2, r!2l E R

D2
: 

1,3,5 ° 
{a, 3, 5} h - j3 + Ji,t 

{a, 5, 1} , aEi{O, 2, 4} is -it + Ji,2 
{a,1,3} h-jz+Ji,3 

{O, 2, a} Ji,1 - Ji,2 - h - i 
{2, 4, a} , a E{l, 3, 5} Ji,2 - /13 - it - i 
{4, 0, a} /13 - /11 - h - i 
{0,2,4} -h-jz-j3-~ 

it +h +h 
it +/12- Ji,s 

h+Ji,s-Ji,1 
h+Ji,l- Ji,2 
•• 1 
It-h-Ji,3+'2 
jz-h- Ji,1 +t 
•• 1 

13 - It - Ji,2 +2' 
1 
2" 

We notice that the phases 'i'+ which belong to (J2 = {O, 2, 4}, 
{O, 3, 4}, {O, 3, 5} coincide respectively with those of 
formulas (18.4), (18.5), (18.6) of Ref. 6, apart from a 
possible ± 1 discrepancy whose origin can be traced 
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back to our particular definition (4.1). 

By restricting the results of 4. 7 to R(SU(l, 1», it is 
possible to classify the symmetries of SU(l, 1) 3j
coefficients involving discrete unitary representations. 
Here we count them, while in Appendix C a particular 
phase definition of the 3j of SU(l, 1) is proposed and its 
symmetries are characterized explicitly. 

4.9. Corollary: 'fIr<1l E R(SU(l, 1» there are in general 
108 distinct points (r<1) included) rER(SU(l, 1» such that 
I ~(r) I =: I ~(r(1) I. 

In fact, by virtue of 4. 5 and 4. 7, there are 72· 12 
distinct points in the collection of the 12 regions Ra con
sidered in 2. 16 where ~ has the same value within a 
phase; for everyone of these points, which does fulfill 
SU(l,l) constraints, there exist in general seven others 
which do not, because they are obtained from the given 
one through G(3j) operations which change the sign of at 
least one I parameter, as remarked in 2.15. Therefore, 
the symmetries of the 3j of SU(l, 1) with generic dis
crete unitary representations are in number of 72·12/8 
= 108; some of them have been pointed out in Ref. 3. 

5. A GEOMETRICAL REALIZATION OF REGGE 
SYMBOL AND ITS EXTENSION 

We conclude our discussion by presenting a possible 
generalization of Regge square-symbol. As explained in 
Sec. 2, to each Ra=Rabc we associate the square-symbol 
of Eq. (2. 13) whose structure is characterized by the 
property that the sum of each column- or row-elements 
with O!ttlto.c},-l equals - 2; these linear relations are 
the only ones which involve ala,b,c)' inside the class el 
of aU possible relations defined by Eq. (1. 5). Our aim 
is to find a structure which takes into account all rela
tions of el in a way similar to that of Regge symbol, 
so that the elements of G(3j) correspond to those 
permutations of elements of the structure which map 
el onto itself. Clearly in el there are altogether 20' 6/4 
= 30 elements. 

'\-:af 

FIG. 2. Geometric representation of the modified Regge 
square-symbol (d, e, f). 
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FIG. 3. Kinematic variables of 5-point dual amplitude. 

The looked for structure turns out to be a configura
tion 0 of 15 points, 15 planes, and 20 straight lines in a 
three-dimensional Euclidean space, characterized by: 

(1) a one-to-one correspondence Al exists between 
straight lines and the 20 aa's, and between points and 
planes of the configuration and elements of Q l' 

(2) If an element of Ql corresponds to a point (plane), 
the latter belongs to (contains) the four straight lines 
associated to the a's which are involved in the given 
relation. 

(3) Each line contains three points and belongs to 
three planes. 

Clearly, the Regge square-symbol (a, b, c] corre
sponds under Al to the portion of 0 shown in Fig. 1 
where pOints, planes correspond to the rows, respec
tively columns of [a,b,c], and w={a,b,c,d,e,f}. 

To characterize the whole configuration and prove that 
it does exist, let us define a modified square-symbol 
(d, e,f) associated with each [a, b, c]: 

(

(laM - 1 (labe - 1 (labl - 1) 
(d, e,f) = a bcd -1 Qbce -1 Qbal-1 • 

aaad - 1 Qaae - 1 (laal - 1 
(5. 1) 

It is easily checked that the 72 symmetries of (a, b, c] 
are preserved by (d, e,f); namely, induced permutations 
of rows, columns and exchange rows with columns of 
(d, e,f). Furthermore, the structure of (d, e,f) suggests 
we define the collection Q2 of the 15 sets A la, b/ 

= {Qx : {a, b}c xl- and of the other 15 sets A w-Ia, b/ = {Qx : X 
C w - {a, b}}, Va"* b E w. In this way we see that, while 
we had to add (lla,b,c/'- 1 to each row- or column-sum of 
[a, b, e] to characterize elements of Ql> in the case of 
any (d, e,f) we have to associate (l 1<1, e.l/' with each row 
or column of (d, e ,f) to find elements of Q2; for instance, 
the rows of (d, e ,f) characterize respectively Ala, b/, 

A Ib, a" A Ic,a/ and its columns: Aw-Ie.l" Aw-I/,d/, Aw-Id,e/' 
Therefore, in the same spirit as we represented [a, b, c] 
geometrically in Fig. 1, we may represent (d, e,f> in 
Fig. 2 where points correspond to rows, and planes to 
columns of(d,e,f). 

This geometrical representation can be generalized 
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as follows. In the five-dimensional space X of the 
homogeneous real variables (xo, xl> X2' X3, x4, x 5), let us 
define the linear varieties 

Via, b, c/ ={xa = Xb = Xc}, 

Vla,b/ = {xc =Xd=Xe = XI}, 

(5.2a) 

(5.2b) 

Vw_Ia,b/ ={xa=xb}, (5.2c) 

V a, b, e E w ={O, 1,2,3,4, 5}={a, b, e, d, e ,f}. Then con
sider any two-dimensional linear variety T 1ll generic 
position with respect to all V's and define 

V= vn T, vV. (5.3) 

Of course, Vla,b,a/ are straight lines, while Vla,b/ and 
V w-Ia, b/ are respectively points and planes in X n T. 
These elements form the configuration 0 whose inclu
sion properties19 are 

Vla,b/C Vla,b,s" Vla,b,.., t/ 'fIs, fE w -{a, b}, (5.4a) 

VII>,q/ C VIa, b,c/ C VW_Il>,q/ 'fIP, q E {a, b, e}, (5.4b) 

Vw_Ia,b/:::J VIs,t" Vla,b,s/ Vs,fEw-{a,b}. (5.4c) 

Therefore, the one-to-one map A2: O-{aa},Q2 defined 
by 

Via, b, a/ - Qaba, 'fIa, b, c E W, 

Vla,b)-Ala,b" (5.5) 

V w-Ia, b/ -A w-Ia, b) 

provides the generalization of the modified square
symbol, as represented in Fig. 2. On the other hand, if 
A:{aJ-{Cla} is the map defined by 

(0,2,4) - [1, 3,5), 
(5.6a) 

and by the constraint 

A(Cla ) = CIa <::=<> A(Q.,..) = CI~, 
1 2 1 2 

then Al =AA2: O-{aa},Ql is the one-to-one correspon
dence introduced in (1), (2), (3) which yields a general
ization of the Regge square-symbol as represented in 
Fig. 1. 

From the previous discussion it follows that the ele
ments P12 of G(3j) permute lines, points, planes of 0 
respectively among themselves, while the elements Pi2 
also exchange points with planes. 
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APPENDIX A: CONNECTION WITH VENEZIANO 
FIVE-POINT AMPLITUDE ANO) PROOF OF (1.8) 

To describe the scattering of 5 spinless neutral parti
cles (Fig. 3) with 4-momenta Ph i = 1, 2, ... ,5, the fol
lowing amplitude has been proposed recently20: 

B(YI2' 1'23,1'34,1'45' 'Y51) 

= j~ 1 
dx f

o
1 dy x-r12"ly-rW 1(1_ x)"m-l(l- y)"rwl 

x(1_xy)-rI5+r23+r34, (Al) 

where 
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(A2) 

having chosen the metric p~ = -1. As energy-momentum 
conservation yields 

(A3) 

only 5 ')I Ii are linearly independent and ')I i, i+1 (')15. 5+1 = ')151) 

have been selected in (A1). The main properties of B 
can be summarized as follows: 

A4. B(')I 12, ')123, ')134, 'Y45' 'Y51) is invariant under any 
cyclical and anticyclical permutations of labels 1, ... , 5; 
this property reflects the symmetry of Fig. 3. 

A5. The only singularities of B are simple poles at 
nonnegative integer values of each 'Yi, i+1; moreover, B 

has poles in 'YI. i+1 and 'Yi,i+1 if and only if {i, i + 1} 
n{j,j +1}=~. This property is known as "duality." 

A6. The integral (A1) can be written in terms of the 
F function introduced in Eq. (1. 6) as follows: 

B(Y12, ')123, ')134, ')145, 'Y51) 

= r(- ')I12)r(- ')I23)r(- ')I34)r(- ')I45)r(- 'l'51) 

x F('Y51 + ')112, 'Y12 + 'Y23, 'Y23 +')134, 'Y34 + 'Y45' 'Y45 + 'Y51)' 

Therefore, from A5 it follows that F is an entire func
tion of each variable ')Ii-1,! + ')II. i+1' 

APPENDIX B: PROOF OF CONSISTENCY OF 
EQS. (3.6) 

B1. We show that, givenanya,bEw, a*b, rERa, 
then Fp(b;r)/ Fn(a;r) computed from Eq. (3.6) does not 
depend upon any 7' such that bE 7', a E 7", 1 7'n (J 1 = 2,3. 
In fact, we have 

TI cE T-b f ( O:Qbc (r» 

TIcE ... f(O'{T_bIUc(r» - TI cE ....... f(O:{T_bIUC(r» , 

and recalling Eq. (3.3) 

{ TI r(0:1T-b)UC(r»}-1 = TI f(O:dC(r» 
cE....... cE ....... 

x exp{i 7T [,9 ({a, b, c };r) O:abc(r) +,9({a, b, c}, ;r) 0: lao b, c),(r)} 

= {n r(O'abc(r» } CE ....... 

xexp{i7T TI [,9({a, b, c};rh 0: {a,b,C),(r)]} 
cE1' .... 

because the following identity holds mod 2: 

,9(x;r)O'x(r) +,9(x';r)O'x,(r) =,9(x;r) + O'x,(r). 

Then by direct computation we obtain 

Therefore 

(B1a) 

(B1b) 

~p((b;r» = exp{i7T(3ra d + 0aEa'0bEa)} TI r(O'x(r», 
Fn a;r x::l {a, b) 

which is independent of 7'. Similarly, we may prove the 
inverse relation 
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(B1c) 

B2. We show that, Va,b,cEw, a*b*c*a, the ratio 
Fp(b;r)/ Fp(c;r) I" ={Fp(b;r)/Fn(a;r)}' {Fn(a;r)/Fp(c;r)} 
does not depend on a. In fact using Eqs. (3.3), (B1a), 
we get 

Fp(b;r)/Fp(c;r) la 
= exp{i7T[3r" + 3r c + 0aEa'( 0bEa + 0CEa)]} 

xexp{i7T[,9({a, b, c};r) + O'w_{a,b,cl(r)} TI f(O:x(r». 
bEXCw-c 

We notice that ,9({a, b, c}) = 0bEaocEa + O"Ea(ObEaOc~a' 
+ 0bEa'0cEa), mod 2, so that li"Ea'(ObEa + 0cEa') +,9(\a, b, c)} 
= 1 + ObEa'0cEa" mod 2. Therefore, 

~p((b;r» =exp{i7T(3rb-i+obEa'0cEa')} TI r(O'x(r». 
Fp c;r bEXCw-c 

(B2a) 

Similarly, we obtain 

~n(bjr» = exp{i7T(3rb +i + 0bEaocEa)} TI r(ax(r» (B2b) 
Fn c;r cEXCw-b 

B3. Finally, we show that Vb, c E W, b*c, {Fn(c;r)/ 
Fp(b;r)}'{Fp(b;r)/Fp(c;r)} is independent of b. In fact, 
by means of Eqs. (B1c), (B2a), (3.5c), this expression 
takes the form 

exp{i7T((3r b - i + 0bEaocEa') + (3rb - t + libEa'ocEa')]}Qp(c;r); 

therefore 

Fn(c·r) . 
~( . ) = exp(z7TlicEa')Qp(c;r), 
Fp c,r 

and, Similarly 

Fp(cjr) _ ('" )Q ( . ) -(. )-expz7TvCEa nC,r. 
Fn c,r 

APPENDIX C: SYMMETRIES OF THE SU(,,') 
3j COEFFICIENT WITH DISCRETE UNITARY 
REPRESENTATIONS 

(B3a) 

(B3b) 

To catalog the symmetries of the SU(l, 1) 3j-coeffi
cient with unitary discrete representations, it is con
venient to use the cycle notation to represent permuta
tions of point-vectors r, r<t), etc. in R; for instance, 
the operators Pi2 = ± (052)(34) E G(3j) send r(1l E R into 
r!2)ER, where (r~2».,=±r~1l, (r12».,=±r11l , (r~2»., =±r~1), 
(r~2».,=±rl1l, (r12».,=±r~1l, (r~2».,=±r~1l. 

We define the SU(l, 1) 3j-coefficient as follows: 

( j1 h j3) =iiP(r), VrER(SU(l, 1». 
jJ.1 jJ.2 jJ.3 SU(1,!) 

(C1) 

Recalling 3.15, 4.2, we obtain the phase relative to the 
corresponding Clebsch- Gordan coefficients of Ref. 2: 

(
j1 j2 j3) (. )C!\ ~V,}a = exp Z7TP 
jJ.1 jJ.2 jJ.a SU(1,1l v-2ja- 1 ' 

(C2) 

where 

P=is+jJ.1-jJ.2 ifrERo12URo23, 
(C3) 
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- (01)(34)(2s) 
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.~ ............. /, ~; 

I •.. ·· .,'.::f' \{ I'll-: : \ 
I "," ,.. ..... ,. ,.. • .. • ; \ 

S'···· ' .. :,..-.. , \ ! \ '\ : : 
"01 -- \ ,-,/ 'ij • I __ " -...----'>:- 425 : : 1 : J 

,/ .-(o1X~)(1t5) " '"" :. : • / f \ .••• \ .... ..... :r I -'" i i 'it I 
I 1\'" ,....: \!tv : 1 

: 1 ........... I': ....... \ )i.* : i 
J.a. / 1\ ". '. "\t.. '... / : 1 

•• _/,' \'\.,........... " ..... -:)::~ 04.1.... ,f./ 
- (7 ,)(14)(05) r, " v... \ i ~ 

"" " •.••• (420)(SM) \ . j / 
............. ,. 4............... ~ f .. 1 _..-_""" 

'.-.-~.-.::.::. 423 •• , '\ 
, I 

(024)(1~5) ' ....... _..,../ 

- (45)(12)(03) 

FIG. 4. Usual (non-Regge) symmetries of the 3j of SU(1,1). 

p = it - j2 - 113 if r E R234 U R245 U R04S U R 014' 

We like definition (Cl) because the usual (non-Regge) 
symmetries of the SU(2) 3j-coefficient hold also in phase 
in the SU(1, 1) case. 

In fact, these symmetries read 

h3) 
illS SU<1.1> 

!~2 !~3) SU(t.1) 

where J = 0, J = it +i2 +js if (it> i2, is) is an even, respec
tivelyodd, permutation of (1, 2, 3); from Eq. (2. 1) it is 
clear that the even permutations of j's are realized by 
(024)(135), (420)(531), while the odd ones are realized 
by - (45)(12)(03), - (01)(25)(34), - (23)(14)(05) and the 
sign inversion of jL'S by - (01)(23)(45). All these opera
tors are in G(3j) and send any r(1) E R(SU(l, 1»; 
into some r(2)ER(SU(1, 1» the phases are easily 
checked by means of 4.2, 4.7. It is worth llnalyzing 
into which region RfPJ. is sent a point r(1) E RU1 by 
these operators. All cases are summarized 
dh:;,ected toward vertex 0'2 if, Vr(1l ERu1 : r(2)=P12r(1) 
E RU2 ; the edge is obviously labelled P12 • Notice that, 
for each R , there is a particular Pi2 such that r(2) 
= Pi2r(t) E 1u if r(1} ERa; for instance, Pi2 = - (23)(05)(14) 
if CJ ={O, 1, 2}. 

From 4. 9 we know that the symmetries (C4) do not 
exhaust all the invariance properties of the SU( 1,1) 3j
coefficient. To complete the analysis, we may search, 
for any given Rrs , all those elements P12 of G(3j) such 
that, if r(1)ERa, then r(2)=P12r(1)ERa• To this end we 
notice that, setting{ao,a1,a4}={0,2,4}, al=ai_t+1, 
i E{1, 3, 5}, the regions Ro's are of the type R"0>"2.,,1' 

If r E R"0'''2'''1' according to 2.4, the following pattern 
p of inequalities holds: 
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r ao -r"4>0, r"2- r "4>0, r"t- r"4>0 
p= r"G - r"3 > 0, r"2 - r"a> 0, r"l- r"3> 0, (C5) 

r"o - r"s > 0, r"2 - r"s > 0, r"l - r"s> 0 

and if r is further restricted to R" a a, we also have 
(}f 2f 1 

r"O -ra1 ;;,. -1, 

r -r ;;"-1 "4 liS • 

(C6) 

(C7) 

Clearly th~ 72 elements of G(3j) which send r(1) E RII0'''2'''1 
into r(2) E R"O''''l'''l permute rows, columns, and rows 
with columns of p; however, only part of them yield r(2) 
which fulfills (C6), (C7) as well. In fact, if r(2) 
= (a a )r(t) then r(2) - r(2) = r(1) - .... <1> ~ 1 . so that (C6) o 1, "0 "1 "1 < "0 ' 
is satisfied only in the particular cases r!~) - r!;) =± 1, 0; 
similarly, the permutation (a4aS) leads to r(2) 

RA I 'f (1) <1>_ 1 0 
E "0>112."1 on y 1 ras -r"4 -± , . 

For the time being, let us restrict ourselves to con
sidering r(1) satisfying (C5) and 

r"o - rat;;" 0, (C6 /) 

r"4 - r lls ;;,. 0, (C7 /) 

so that (C6 /) in general is violated by r(2) = (aOa1)r{t), and 
(C7') by r(2l = (a4aS)r<i). We notice that r(2) = (aOa2)r(1) 
satiSfies (C6 t ) if r(2) - r(2) = r(1) - r(1);;,. 0 while the 

"0 "1 "2 111 ' 
analogous conditions for the operators (a1a2), (aOata2) , 
(aOa2at ) , are, respectively 

r(1) _ r(t);;,. 0 r(t) - r(1);;,. 0 r(1) - r(1);;,. 0 
~ "'l ' ~ "'l ' "'l ~ • 

Similar conditions are obtained for the permutations 
(aaa4) , (aSa5), (a3aSa4), (aSa4aS); they read, respectively 

1"a,-"'~ 

R:s Ca, a.) 
"'Ai'~ 

R1 (a" a. d,) 
R2 R2 

(~a. a.) 

A) 

Jl 

B) 
FIG. 5. Subregions Rn. 1f1 of R. " a and action of elements of 

~o· t' 2 P".{J". '1=1,2,3. 
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Therefore, let us call R~, R~, 1/ = 1, 2, 3, the subregions 
of R40' 42. 41 where (C6'), (C7') are satisfied in addition to 
the inequalities (Fig. 5): 

R l : r40 - r42 ;> 0, r42 - r 41 ;> 0; 

R 2: r 40 - r42 '" 0; (C8a) 

R3: r -r "'0' 42 41 ' 

Rl: r 44 - r43 ;> 0, r 43 - r4s ;> 0; 

R2: r - r "'0, 44 43 ' (C8b) 

R3: r - r '" 0 43 4S • 

Then we call P~, P~ the sets of those permutations over 
(rJ1l, r!~), r!p) , respectively (r!~>, r!~ >, r!p), which send 
r(l~ER respectivelyr(l)ERn .,,=123 intor(2) 

11' '" '" 
which satisfies (C5), (C6'), (C7'). It is easily checked 
that 

Pl = {n, (a Oa2), (ala2)}, 

A={n, (aOa2) , (a Oa2al )}, 

A={n, (ala 2) , (aOala2)}, 

p l ={n, (a3a4), (a3aS)}' 

p2 ={n, (a3a4), (a 3a Sa4)}, 

p3={n, (a3aS), (a3a4a5)}' 

(C9a) 

(C9b) 

where n denotes the identical operator. Notice that the 
elements of Pnl commute with those of pn2, so that in 
P~10 p~2 there are 9 distinct elements and E!ach of them 
maps any r(ll E ~1 n R~2 into distinct r~) E R40.42.41' 
From Fig. 4 we realize that, if r(l) ER40.42.41' then 

r(2) = - (a2a3)(aOaS)(ala4)r(1) E R40'42.41; 

the 18 operators Awhich maR r(ll E ~1 n R~2 into 18 dif
ferent points of R40'42,41 (r 1> included) are 

{n, - (a2a 3)(aOaS) (a la4)}0 P"10 p~2, '/)1'/)2 = 1,2,3. (C10) 

We shall not write these symmetries explicitly in 
terms of j's, jJ. 's, because for this purpose we should 
consider separately each one of the nine subregions of 
R40.42.41; for the same reason we shall not writte the 
corresponding phases, which-at any rate-can be 
easily computed by means of 4. 2, 4.7. 

Finally, we comment briefly on the case in which r(ll 
satisfies (C6), (C7); this implies the possibilities 
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r .. - r .. '" ± 1,0, and r .. - r .. = ± 1, 0, so that the operators o 1 4 S . 
(a Oa 1) , (a4a S) may become acceptable symmetries and 
consequently may modify the picture we have just 
drawn.21 However, this remark applies only to a very 
particular class of 3j-coefficients which lay on the 
boundary of R(SU(l, 1) and involve the lowest represen
tations; for this reason we feel justified in skipping the 
corresponding details. 
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Stationary, axisymmetric, asymptotically flat space-times with a black hole surrounded by matter 
rings, disks, or shells are considered. A certain set of invariant functions, called local invariants, is 
defined which contains full information about the metric and electromagnetic field in a small 
electrovacuum neighborhood of the horizon. The local invariants are shown to satisfy an inequality, 
which is a generalization of the well-known Kerr-Newman inequality m 2 > a 2 + e 2, and which places 
an upper bound on the gravimagnetic, electric, and magnetic field strengths as measured at the 
surface of the black hole, independently of whether the fields are produced by the black hole itself 
or originate in outside sources. 

1. INTRODUCTION 

An excellent tool to study the properties of black 
holes-at least theoretically-is the simple model of an 
equilibrium system consisting of a black hole sur
rounded by some matter configuration and otherwise 
perfectly isolated from any other influence. The cor
responding space-time is, therefore, stationary, 
axisymmetric, and asymptotically flat. For example, 
by using this model, Bardeen, Carter, and Hawking 
were able to extract an important equation governing the 
energy balance of a black hole. 1 Among other factors the 
striking resemblance of this equation to the second law 
of thermodynamics has led to very interesting specula
tions. 2 ,3 

On the other hand, the full content of the equilibrium 
model does not seem to be exhausted. It still offers 
many problems which are of importance for black hole 
physics though not directly related to such faSCinating 
fields as "black hole thermodynamics" or even "black 
hole quantum mechanics. " With this in mind, the model 
was more thoroughly studied in,4 in particular con
cerning the structure of the horizon. A promiSing set of 
invariant functions, called "local invariants, " from 
which the metric and the electromagnetic field in a 
small electrovacuum neighbourhood of the horizon can 
in principle be reconstructed, has been found. We hope 
to gain new insights into black hole physics by studing 
properties of these invariants. Some support for these 
hopes was made in Ref. 5, where simple and symmetric 
relations have been written between the local invariants 
and the black hole degrees of freedom (surface area, 
angular momentum, and charges). 

In the present paper, we develop the idea a step fur
ther. In Sec. 2, a concise definition of the local in
variants is given together with a review of their prop
erties to the extent necessary to understand the new 
results. These consist in part of a great number of 
small improvements, interrelations and interpretations 
and, in part, of an interesting inequality which must be 
obeyed by the local invariants. The discussion of some 
implications of the inequality closes the section. All 
more difficult proofs of the new statements are then 
presented in Sec. 3. 

We use the dimension and sign conventions following 
Newman and Penrose, 6 because many spin coefficient 
equations are used. Thus, the dielectric constant €o of 
vacuum, the light velocity c in vacuum, and the gravita
tion constant G all equal to 1. The signature of the 

space-time metric is - 2 and the definitions of the 
curvature and Ricci tensors are 

VI;Jk - VI ;kJ = V, RfJk' 

RIJ=R~jl' 
the semicolon denoting the space-time covariant 
derivative. 

2. LOCAL INVARIANTS 

In Ref. 7, the structure of all null hypersurfaces 
whose generators (= rays) have zero convergence and 
shear 

p=O'=o (1) 

and which possess compact two-dimensional space like 
sections has been investigated. All Killing horizons 
representing black holes6 have these properties, but, 
e. g., the null hyperplanes in Minkowski space-time 
are excluded, because none of their sections is compact. 
We call such hypersurfaces "perfect horizons. ,,9 

Choosing a pseudo-orthonormal tetrad ll, nl, m I, m I in 
a neighbourhood of a perfect horizonH such that II and 
m I are tangential to Hand parallelly propagated along 
the rays of H, we can write at H 

ll;j li = m I u lJ = 0, 

ll;J m J = (a + (3)ll, 

m I u mJ = Xli - (a - (3)mI, 

nil umJ = jJ.lI + (a -Mm'. 

(2) 

Here, we use the spin coefficients p, 0', QI, (3, X, jJ. as in
troduced in Ref. 6 and the relations (1). The following 
definition shortens many equations 

g=a+(3, r=a-(3. 

The relations (2) imply that the vector a l ;JbJ is tangential 
to H, if al and b I are tangential to H, because all such 
vector fields are combinations of just l I , m I, and mi. 
Thus, (2) defines an intrinsiC affine connection on H. In 
addition, the well-known degenerate metric on H is de
fined by 

(ll, ml)= (ll, ll)= (ml, ml)=O, 

(ml, ml) =-1. 
(3) 

ConSidering H as a three-dimensional manifold with 
regular affine connection (2) and degenerate metric (3), 
we can answer many questions by working within Hand 
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forgetting about the outside space-time;1). In such a 
way, a simple classification of perfect horizons ac
cording to their symmetry has been worked out in 
Ref. 7. 

We restrict our attention to axisymmetric perfect 
horizons whose spacelike sections have spherical 
topology. Then, the set of invariantslO 

(4a) 

can be defined as follows (cf. Ref. 4). Let 5 be a com
pact intersection of H with an axisymmetric spacelike 
hypersurface 2; in;1). Then, 5 is topologically a sphere 
and the induced metric on 5 can be written as 

ds2:::: _ R2(d,,2 + A 2(,,) dcp2) (5) 

with unique R> 0, and A("):;' 0 given up to the trans
formation 

reversing the poles" = 0 (north) and" = 71 (south). cp 
corresponds to the parameter of the SO(2)-group with 
the period 271, and the direction of its increase can be 
fixed by a convention-say, from the west to the east. 
R can be called the "radius" and A(,,) the "shape func
tion" ofH. 

( 6) 

The axisymmetry Killing field ~i corresponding to cp 
is, therefore, uniquely determined up to its sign, which 
changes under (6). Let l' I, now, denote an arbitrary 
vector field tangential to the rays. It is fixed up to a 
scaling 

lli -l1lti (7) 

where 11 is any function on H. It follows that B(,,) defined 
by the equation 

~I;i lli =B(,,)l' i, (8) 

(proved in Sec. 3) is an invariant with one exception. 
Under (6), B transforms as 

B(,,)- -B(71-"), 

It is also shown in Sec. 3, that the following equation 
holds 

(9) 

if we restrict l,i to be axially symmetric, and that B:::: 0, 
if the outside space-time;1) is static. Let us call B(,,) 
"gravimagnetic field. " 

Finally, let n~ be the unit future directed normal vec
tor to 2; and n: the unit outwards pointing normal vector 
to 5 tangential to 2;. Then, E(,,) is the component of the 
electric field and H(,,) that of the magnetic field in the 
direction of n; as measured by an observer with the 4-
velocity n! at any point of 5 with the coordinate". E(,,) 
and H(,,) do not depend on the choice of 2;. We have, 
namely, 

~1 :::: ~(E - iH), 

where 

~1:::: ~ FiJ(llni + ml mi) 

(10) 

is a component of the Maxwell spinor ~ as defined in 
Ref. 6. ~1 is invariant against boosts in the plane de-
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fined by II and nl, rotations in the orthogonal plane as 
well as null rotations about II [because ~o=O, see 
Ref. 7; and (~l)' Ill:::: 0, see Ref. 7]. II and n l can be 
chosen as 

l' = (1/12) (n~ + n:), n l
:::: (1/v'2) (n~ - n;), 

which implies (10) and the required invariance. E(,,) 
and H(,,) transform under (6): 

E(J)-E(71-J), H(,,)-H(71-"), 

The functions A(,,), B("), E(J), and H(,,) must satisfy 
the obvious regularity and smoothness conditions: 

A = 0, A' :::: 1, A -IA", A -IB regular; 

A>O, (4b) 

The invariants (4) are well defined for all axisym
metric perfect horizons. Their role is particularly 
interesting, if the horizon admits an additional sym
metry-the collineation group C. This is the case for 
any of the following symmetry types: SO(3) x C, SO(3) 
xcr, SO(2)xC, SO(2)xcr (Ref. ll)-which were all 
called AC-horizons in Ref. 4. For example, the Kerr
Newman horizon with m 2> a2 + e2 belongs to this class, 
and the horizon of any generic black hole in equilibrium 
with surrounding matter is generally considered as 
necessarily being of this AC type. l But it is important 
to keep in mind that all results given from now on apply 
only to axisymmetric stationary space-times with 
bifurcate Killing horizon. Nonaxisymmetric static 
space-times with bifurcate horizon or axisymmetric 
stationary space-times with horizon of the symmetry 
type SO(3)xT, SO(2)xT7 (such as extreme Kerr
Newman) need essentially different sets of invariants to 
describe their structure,4 even if the extreme types 
seem to be limit cases of the AC types. 

Two facts have essentially been shown for the AC 
horizons in Ref. 4. 

Lemma 1: Let;1) be an axisymmetric stationary 
space-time which contains an AC-horizon H+ as a 
Killing horizon and which satisfies Einstein-Maxwell 
electrovacuum equations in a neighbourhood of H+. Then, 
there is another AC-horizonH- inj}J, intersectingH+ in 
a compact space like surface S. If the pole convention 
for H+ and H- coincides at 5, then the corresponding in
variants (4) satisfy 

R+ =W, A +(,,) =A -(J), B+(,~) = - B-(J), 

E+(,,) ::::E-(,,), We,,) =H-(,,), 

and H+ U H- is a bifurcate Killing horizon symmetric 
under the (cp, t) _ transform. 12 

Lemma 2: Let the conditions of Lemma 1 be satisfied. 
Then, the characteristic initial data for Einstein
Maxwell electrovacuum equations satisfying the cor
responding constraints along the two intersecting null 
hypersurfaces H+ and H- (this all abbreviated by eID) 
determines uniquely a value of the invariants (4), and 
any C3 -value of the invariant (4) determines a unique 
CID. 

From these two Lemmas, and from the well-known 
uniqueness theorem for the space-time development of 
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a given cm, 13 we infer that a value of the set (4) con
tains complete information about the metric tensor glj 

and the electromagnetic tensor Ffi in an electrovacuum 
neighbourhood of the corresponding horizon. We call, 
therefore, the quantities (4) "local invariants" (to 
distinguish them from other quantities in black hole 
physics such as the electric potential difference between 
the black hole surface and infinity, 14 rotation of the 
black hole with respect to infinity, 1 surface gravity, 1 

and other possible potential-difference-like properties, 
which need not be determined completely by the local 
space-time structure at the surface of the hole). We 
have shown 

Theorem 1: The most general stationary axisymmetric 
solution of Einstein-Maxwell electrovacuum equations 
that contains a regular bifurcate Killing horizon depends 
on arbitrary parameters and functions which can be 
chosen as in (4).15 

An interesting problem is the following. It is a well
known fact that there are Killing horizons which cannot 
form an absolute event horizon16 in any space-time. 
For example, the Killing horizon in the Ehlers-Kundt 
C-metric space-time, 17 or the inner horizons in the 
Kerr-Newman space-times with m2 > a2 + e2 (Ref. 18) 
(they all violate the condition that there should not be 
trapped surfaces outside of themI6

). Can one distinguish 
the Killing horizons which may be absolute event hori
zons from those which may not just by looking at the 
values of their local invariants? A partial answer is 
given by the following: 

Theorem 2: A necessary condition for a Killing 
horizonH of AC type to form an absolute event horizon 
in an axisymmetric stationary space-time is that the 
corresponding local invariants (4) satisfy 

I~(!: +R2E2+R2H2) AdJ<2. (11) 

The proof is given in Sec. 3. In order to see implica
tions of Theorem 2, recall the following properties of 
the local invariants (shown essentially in Ref. 5): 

Theorem 3: Let the value (4) of the local invariants 
correspond to the horizon H of a black hole in an axisym
metric stationary space-time If1 which is electrovacuum 
in a neighbourhood of H. Let A, J, Qe' and Q h be the 
net surface area, net angular momentum, net electric, 
and magnetic charge of the black hole as defined in 
Refs. 1 and 14. Then 

A = Iii dJdcp, 

Y =- ~ r B(J) Ii dJdcp, 
81T ir; 

Qe = 4~ Is E(J) Ii dJdcp, 

Qh = -4~ Is H(J) Ii dJ dcp, 

(12) 

(13) 

(14) 

(15) 

where 5 is any compact space like section of Hand g is 
the determinant of the metric (5) on 5, 

Ii =R2A(J). (16) 

Wheeler's well-known magic formula "black holes 
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have no hair" could, now, take on the following form: 

Conjecture: Any equilibrium state of the system con
Sisting of a black hole surrounded by matter and charge 
configurations is fixed, if one prescribes the values of 
A, J, Qe' and Q h of the black hole, and specifies the 
mass and charge currents of the matter configuration. 

In Ref. 5, this conjecture is illustrated and made 
plausible in the neighbourhood of the Schwarzschild 
solution by conSidering small axisymmetric, stationary 
gravitational and electromagnetic perturbations of the 
background containing a thin charged spherical matter 
shell (see, e. g., Ref. 19). In particular, the fields of 
outside sources can deform the black hole surface and 
change Rand A(J) (see, also Ref. .20), pr·oduce a non
vanishing gravimagnetic field B preserving Y = 0 (be
cause the space-time in which a rotating matter ring is 
present cannot be static even if the black hole in the 
middle does not rotate), and the radial component of the 
electric and the magnetic field originating in the charge 
and current of the shell can be nonzero at the horizon 
without contributing to the integrals (14) and (15). 

Now, we can discuss the meaning of (11). It is clearly 
a generalization and sharpening of the well-known in
equality 

(17) 

holding for the bifurcate horizon in the Kerr-Newman 
space-time with the total mass m, angular momentum 
am, electric charge e, and magnetic charge h. The 
main similarities and differences between (11) and (17) 
can be summarized as follows: 

(a) On setting the Kerr-Newman values of the local 
invariants into (11), we obtain not only (17), but also 
the condition 

Thus, (11) is stronger than (17), excluding the inner 
horizon. Indeed, all known Killing horizons which cannot 
play the role of absolute event horizon (C-metric hori
zon, Kerr-Newman inner horizons, Robinson-Bertotti 
horizon as well as other CT-horizons4

• 5) are excluded 
by (11), as one can immediately verify. 

(b) Just as the inequality (17) does, (11) places 
limitations on the active degrees of freedom of a black 
hole, if its irreducible mass is fixed (angular momentum 
and charges are "active, " because their presence allows 
the extraction of energy from the hole). Comparing (11) 
with (12)-(16) shows indeed that J, Qe' and Q h cannot 
be arbitrarily large for a hole whose A is kept constant. 

(c) (11) implies limitations on the gravimagnetic field 
B, the electric field E and the magnetic field H at the 
surface of a black hole independently of what the source 
of these fields is. They can originate from the black 
hole itself as under (b) [which is the only posibility with 
(17)], but they can have their source outside the hole 
as well. One integrates squares in (11) so that the fields, 
which need not contribute to (13), (14), and (15), do 
contribute to (11), if they are nonzero. 

We can speculate about what these limitations on the 
outside fields actually mean: 
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(i) Outside fields which were stronger than the allowed 
upper bound would destroy the black hole, either by re
moving horizon (in an analogy to the well-known phe
nomenon observed in the Kerr family-as a grows over 
m, the horizon disappears), or by producing singu
larities and/or new horizons outside it. 

(ii) Outside fields can never be produced and brought 
down to the surface of a black hole so strong and so 
directed as to violate (11). 

How large is the upper bound? For a spherical "dead" 
black hole with radius R, we have A==sin.9-, J==Qe=Q h 

= 0. Apply a "homogeneous" electric field E = Eo cOS,J. 
(11) takes the form Eo < V3R"1. Using 1 sec"1 
==(2/V3)xI014 CGS21 , we obtain 

En < 6X 1024 R-1 lCGs]. 

Take, for example, R == 2 km, corresponding to a solar 
mass black hole. The upper bound is, then, 3X 1019 CCS. 
Thus, if (11) is everything black holes must satisfy, 
they are robust rather than fragile. 

3. PROOFS 

Equations (8) and (9): The left-hand side of Eq. (8) is 
a real vector tangential to H, hence 

(18) 

where B is a real and C a complex function on H. Multi
ply (18) by a covenient function 1) so that 1" I ==1)1' I is 
axially symmetric, 1. e. , 

L ~z" i= Z"I;i e - ~I;i t"i ==0. 

Hence, the left-hand side of (18) is equal to l" I ;i e, and 
this must be a multiple of 1"1 according to (2). Thus, 
C1) ==0, implying C ==0, because 1) *0. As a by-product, 
we obtain (9). 

It remains to be proved that B depends only on J, or 
B,I[I=O. Observe that (~I, ~1)==_R2A2; we can, there
fore, choose m i such that the relation 

e = _i_RA (mi - mi) 
12 

holds at 5; otherwise let 11 and m l satisfy (2). Then, it 
follows from (8) that 

e == ~ RA(mi - mi) + yli, 

where y is a function on H determined by y ,Ill == B, 
Y I 5 = 0. Now, (9) and (2) imply 

B = _i_ RA(a - Q! + (3 -if). 
12 

On the other hand, the relevant Newman-Penrose 
equations as given in Ref. 6 and adapted to our tetrad 
read 

Q!, Ili = 24>1~O' 

(3,111 =='111 , 

0= 24>o¥o, 

0=- '111 + 24>O¥1' 

(4.2d) 

(4.2e) 

(4.2a) 

(4.2k) 

where we have used the Einstein's equations in the form 

J. Math. Phys., Vol. 15, No.9, September 1974 

4lIJ=24lI¥J 

corresponding to our choice G == c == 1. The required 
equation B,lll=O follows immediately. 

1557 

B == ° in static space-times. Let the spacetime In out
side H be static and axisymmetric. Let ~ and 5 be 
chosen as in Sec. 2. Through any point p of ~ outside 5, 
there passes a totally geodesic axisymmetric spacelike 
hypersurface ~, which intersects ~ in a topologically 
spherical surface 5,. Let n; be the unit future oriented 
normal vector field to ~p at 5,. Clearly 

n;;je=O, 

because ~I is tangential to ~,. On the other hand, if p 
approaches a point Po at 5, ~, converges to H and the 
direction of its normal n! must, therefore, approach 
that of 11. Multiplying the vector n; by an axially 
symmetric factor 1), such that 

n!1), -11, 

we have 

(1) pn!)IJ ~J = 0, 

which implies the statement. 

Theorem 2: The strategy of the proof will be to find 
outer trapped surfaces (see Ref. 16, p. 319) outside of 
H in the cases when (11) is Violated, and then to use 
Proposition 9.2.8 of Ref. 16 which forbids such a situa
tion. The conditions under which the proposition holds 
are supposed to be satisfied in In. This does not mean 
any essential restriction of generality at least as con
cerns physically interesting space-times. 

H is an event horizon, 1. e., the outside of H coincides 
with its past in In. Let us indicate this by the superscript 
"+" at H. As H+ is a Killing horizon of AC type in In, 
there must be another perfect horizon inln, H-, say, 
whose properties are described by Lemma 1. H- is a 
particle horizon, i. e., its future coincides with its out
side in /f1. As H" is again of AC type, we can choose the 
coordinates Q!, .9-, qJ and the triad Zl, mi alongH- in the 
canonical way described by Theorem 5 in Ref. 4. Then, 
using Lemma 1, we express all relevant quantities of 
H- by means of the local invariants R, A, B, E, H of 
H+, e.g., 

m= _1_ ~ (2- + i. _0 _ _ iQ! !!. 2-) 
12 R 0,J A GqJ A Ga ' 

i 1 B 0=---, 
12 R A 

1 1 A' 
r==----, 

12 R A 
(19) 

Q! == 0 at the intersection H+ nH" and Q! < 0 outside of H+. 

Let us choose an arbitrary axisymmetric compact 
spacelike section S of the lower half (a < 0) of H", propa
gate it by the C -group along H-, and compute the con
vergence of the outgoing null geodeSics orthogonal to 
the resulting family of sections. To this end, we 
perform the transformation 

(20) 
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The new vectors Z~, m! satisfy 

m~ ;J1f=0l1, 11 ;Jm~=Olt, (21) 
-, J n J - R\ / I 
m1;1 m1 = (>Ira + u.1 m - ro + O.~Jll + rm1, (22) 

where r, 0, >Ir2 and m' are given by (19). The pair of 
vector fields ml, in; is (1) surface-tangential, because 
the imaginary part of the corresponding IJ. [the co
efficient at z1 on the right of (22)] is zero [see Ref. 6 
and Eq. (15) of Ref. 7], (2) C-group-propagated, for 
(21) implies 

[m1. ZD=O 
and 11 is a generator of the C-group (cf. Theorem 5 in 
Ref. 4), and (3) axisymmetric. Any other axially and 
C-symmetric pair m~, m4 is of the form (up to a 
rotation m: - exp(il/l) m:l 

mJ=ml + ~Z:, 

where ~ is a complex function on the lower half of H
satisfying a ua a == a va q> == 0 everywhere and ~ = 0 at 
the pole rays J == 0, 1T. The corresponding IJ. is given by 

IJ. =(>Ir2 + O.l mJ - rO) + ([.l mJ - ro + (O+~) (0+ 0. 
(23) 

m~, m~ are surface-tangential, iff 

rJmJ - ~,JmJ - rf + re =0, 

and this is equivalent t07 

~ = ~'Im/, (24) 

where ~ is a real function on the lower half of H-, which 
must satisfy 

~ == ~ =0 at all pOints of the lower half ofH-, 
aa aq> 

~ =0 at the pole rays J=O, 1T. 
dJ 

(25) 

(26) 

Replacing the first term on the right of (23) by its real 
part, substituting for r, 0, >Ira' and m ' from (19), (24) 
for ~, and using (25), we find 

1J.=4;a(;- +R2E2+R2H2+~" +~,,+~~' +(~')2). 
(27) 

IJ. is the desired convergence, all possible sections 5 
being represented by all possible functions ~ [indeed, IJ. 
is a convergence, not an expansion, 6 because it is de
fined as a coefficient at l! in an equation of the type of 
(22) and zt is oriented in the past as it follows from 
Eq. (20) and the fact that a < 0]. 
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The next step is to choose ~ in such away that the 
sum of the first six terms in the parentheses on the 
right-hand side of (27) is equal to a constant real number 
k. If the conditions (26) and (4b) are to be satisfied, k 
is uniquely determined, namely 

k=({ AdJ)-l.jT (1: +R2E2 +R2H2 +~') AdJ. 

Using (4b) again we obtain 

k=(!OT AdJ)-l{IT (1: +R2E2+R2H2»)AdJ_2]. 

Thus, if k < 0, (11) follows immediately. Let k ~ O. 
Then IJ. ~ 0 at all points of 5, and IJ. remains nonnegative 
and regular near H- in the future ofH-, because 5 is 
compact and weak energy inequality holdS. But, then, 
we have outer trapped surfaces outside of H+ U H-. QED 
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The space-time model of general relativity is that of a four-dimensional manifold M, with a metric 
of Minkowski signature. The space of two-forms on M is endowed with a natural complex structure, 
J, generated by the star duality operator. The existence of such a structure is an accidental 
characteristic of the dimension four and of the metric signature. The full differential geometric 
structure equations are expressed in this two-form language and it is pointed out that the weakened 
Einstein empty space equations, i.e., Rab -(l/4)gabR ==0, reduce to the condition that the curvature 
form commute with J. This fact, together with the isomorphism of the two-form space with the 
Lorentz Lie algebra, 10 , are then shown to provide the basis for the importance of the various 
complex representations of 10, such as S 0 (3, C) and the spinor S L (2, C), in understanding the real 
geometry of Einstein spaces. In fact, the complexified Einstein structure equations naturally divide 
into two sets, each the complex conjugate of the other, each involving only one-half of the basis. 

INTRODUCTION 

The study of Einstein's general relativistic field equa
tions has had a profound impact on differential geometry. 
These equations have been expressed in many different 
forms, each showing a different facet of Einstein space
time. 1 In this paper we will concentrate on the represen
tations of the Einstein equations generated by represen
tations of the Lorentz Lie algebra, lo, and try to under
stand why the complex representations of lo, such as 
SO(3, C), 2 and the spinor one, SL(2, C), 3 provide such 
natural and effective framework for the study of the real 
differential geometry of Einstein spaces. Our approach 
will be to start with an expression of the Einstein equa
tions in terms of conditions on the curvature forms. 
Next, the curvature forms will be related to linear maps 
of the space of two-forms, F!, at each point into itself. 
For the special case of four-dimensional manifolds with 
indefinite metrics F! is endowed with another linear map 
onto itself, J, which has the characteristics of what 
mathematicians call a "complex structure.,,4 The exis
tence of J then gives rise to a natural isomorphism of 
the real six-dimensional F! with the complex three
dimensional vector space. We then note that the Einstein 
equations can be expressed simply by saying that the 
curvature commutes with J. Thus, in explicit complex 
representations the equations naturally split into two 
sets, each of which involves only one-half of the basis 
and is the complex conjugate of the other, so that the 
complexijication has essentially halved the number oj 
equations to be solved. 

In order to carry out this program, we must introduce 
a formalism in which the basis for vectors, forms, and 
other geometric quantities can be freely chosen at each 
point to conform to the structure of the metriC, curva
ture, etc. The language of modern differential geometry, 
especially exterior differential forms, is well adapted 
for this program. Those readers familiar with the use 
of bundle theory will find it a natural framework for the 
expreSSion of these ideas. However, for Simplicity of 
exposition, we will not explicitly use bundle techniques 
in this paper. 

FORMS, VECTORS, AND GEOMETRY 

This section contains a brief review of the formalism 
to be used in this paper. This approach involves the use 

of differential forms, and, in particular, takes advan
tage of the availability of arbitrary bases at each point 
to describe the forms, or, equivalently the dual space 
of tangent vectors. These arbitrary bases are some
times referred to as "tetrads" in the physics literature. 
For background information on the use of differential 
forms presented intuitively see Misner, Thorne and 
Wheeler. 5 For a more complete and mathematical treat
ment of these and other tools for differential geometry, 
including complex structures, see Kobayashi and 
Nomizu. 4 

For our purposes, space-time can be represented as 
a four-dimensional, orientable, differentiable manifold 
M. At each point pE M let Tp be the space of tangent vec
tors at p. An element of T, can be defined intrinSically 
as a "differentiation operator", or more concretely re
presented in terms of components, va (a=O, 1,2,3), with 
respect to some local coordinates, X', near p.6 Thus, if 
vET p' we will write 

v ='If'a/aX', (1) 

where the symbols a/aX' stand for differentiation along 
the corresponding coordinate lines. Equation (1) shows 
clearly the usual contravariant transformation proper
ties of the list of components, 'If', under a coordinate 
transformation. The vector space dual to T p, 1. e., the 
space of all linear functions on T p is denoted by 1';. An 
element of 1'; will be represented by a Greek letter, say 
p, and will be called a differential form of degree one, 
or simply a one-form. Let the symbols d:xf' be used to 
represent the dual basis to a/aX', so that as linear func
tions on Tp the d:xa satisfy 

d:xa(a/axb) = 6a
b

• (2) 

An element of Tt can be written in terms of its compo
nents, Pa , with respect to dX' as 

p=PadX', 

showing the covariant transformation law for Pa' 

Tensors are then defined as usual as linear combina
tions of ordered products of vectors and forms. One 
particularly important class of tensors for our purposes 
will be totally antisymmetirc tensors built from one
forms. Those of degree r are called r-forms and a spe
cial symbol,!\, is used to represent the antisymmetric 
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product of forms. Thus, an r-form w can be written with 
respect to the coordinates x" as 

w = (1/ rl )w'l •.. ar dx"li\ ••• " dx"r, (3) 

where the components w.
1 

•• 'ar are totally antisymmetric 
and the normalization by r! is standard convention. We 
will denote the space of r-forms at p by P p so that 
Tt =F1

p• 

The symbol "d" used in the initial coordinate represen
tation of one -forms can be used in an extended sense as 
an operator taking r-forms into (r + l)-forms defined 
directly by 

dw=[l/(r+1)I]W1al •.• a • +lJd:xar+1'Ad:xa1 ••• /\ d:xar , (4) r. r 

where the comma denotes ordinary differentiation and 
the brackets indicate antisymmetrization of enclosed 
indices. 

Now consider the notion of generalized bases for T p, 

that is, bases which need not corr~spond to differentia
tion along coordinates in any neighborhood. Thus if u. 
are four linearly independent vectors at p, then any vec
tor v can be written 

(5) 

in terms of components va. Let us now introduce the 
notation of using boldface letters to represent bases, so 
that u stands for the matrix of four independent vectors, 
{ua}. Let us call such a u a "vector frame" and denote 
the set of all vector frames at p by B p. 7 Similarly, let 
Bt be the dual space of "form frames" so that if p E B;, 
then p stands for a matrix of four independent one-forms, 
{pa}. The duality relationship between Tp and T; pro
vides a natural, unique, isomorphism between Bp and 
B; defined by p +-+ u iff 

pa(Ub) = l5a b' (6) 

or, in more compact notation, 

p(u) = 1. (7) 

As noted above, the introduction of arbitrary frames for 
vectors includes of necessity a wider class of frames 
than those which can be represented by sets of vectors 
each of which is differentiation along some coordinate 
line. It can be shown that a necessary and sufficient con
dition for the existence of a local coordinate system 
such that 

Ua = a/ax", 

or, equivalently, for the dual basis {po}, 

pa = dx", 

is that 

dp=O. 

(8) 

(9) 

(10) 

A frame for which (10) is satisfied is sometimes said to 
be holonomic. In general, however, there will be a non
zero matrix Aa be = - Aa eb associated with each frame p, 
such that 

(11) 

The family of frames, B;, is tied together by the ac
tion of the general linear group, GL(4,R). Thus if PE Bt 
and gE GL(4,R), with g represented by the matrix {gab}' 
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p,a =if'"fJb. (12) 

The dual, contragradient, action of GL(4, R) on Bp is 
obviously defined by means of the relationship (6). Thus, 
if u is dual to p, then ti' =ug-1 will be dual to p', where 

(13) 

A metric on M can be defined in terms of an inner 
product on each T p, denoted by ( , ). This corresponds 
to a nonsingular, symmetric matrix rob for each frame 
u E Bp such that 

(14) 

For physical manifolds each rab is required to be of sig
nature (-, +, +, +). Equivalently, using the duality iso
morphism we can write the metric in terms of an in
variant expreSSion, ds2

, 

The significance of the product of forms on the right 
side of (15) can be seen by relating the p" to the dx", 

(15) 

so that (15) becomes a bilinear quadratic expression in 
the dx", reducing to the definition of metric as a rule for 
deriving infinitesimal distance ds from the dx" regarded 
as coordinate differentials. 

The introduction of a metric permits a specialization 
of the frames to those for which the metric matrix as
sumes some standard form, for example, 1Jab =diag(-l, 
+ 1, + 1, + 1). Let B~ and B~* be those subsets of Bp and 
B; respectively for which the metric matrix {r. b} as
sumes the value {1Jab}. These will be called the families 
of Lorentz frames. Further, for SimpliCity, we will as
sume that B~ and B~* have been restricted by the prefer
red orientation on M. The reduction of B; to B~* thus 
means that the allowed group of transformations has 
been reduced from GL(4, R) to the proper Lorentz group, 
L o=SO(3, 1). The value of this approach lies in the fact 
that the metric assumes a constant standard value at 
each point and the group connecting all admissible 
frames has been reduced to the well-studied Lo. The 
price paid, of course, is that the frames will in general 
no longer be holonomic, that is, composed simply of co
ordinate differentials. 

Another approach to the geometry of M is by means of 
the definition of covariant differentiation and the associ
ated connection forms. By using appropriate linearity 
properties for derivatives, the value of the covariant de
rivative V vw of any vector w along a given vector v can 
be obtained from the action of V v on the members of a 
basis, which in turn can be written 

(16) 

or 

VvU=-W(v)·u. (17) 

The matrix w(v) depends linearly on the vector v and so 
defines a matrix of one-forms, w, called the connection 
forms. 

The relationship between covariant differentiation and 
the metric is established by requiring that the parallel 
displacement naturally defined by the covariant deriva-
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tive preserve the metric inner product. Regarding 
{- w\(v)u.} as the infinitesimal displacement of the frame 
{u.}, the metric condition can be expressed by requiring 
that for any v E Tp, the matrix w\(v) be an "infinitesi
mal" Lorentz transformation, or, more accurately, that 
it belong to the Lie algebra, 10 , of Lo. Thus, the metric 
condition for the connection is 

(18) 

or, 

(19) 

Finally, we add the usual condition that the connection 
be torsion free so that for the basis p E B~* dual to u, 

dp' = W'b!\pb, 

or simply 

dp=wAp. 

(20) 

(21) 

It should be noted that (20) and (19), or, equivalently, 
(21) and (18), serve to uniquely define the connection 
forms w in terms of the basis p and the standard metric 
1). 

The curvature tensor can now be defined by 

dwa
b + wa c/\ wC

b =na
b· (22) 

or in terms of the full list of Riemann curvature com
ponents Ra bcd' 

(23) 

Again, we can make use of the matrix notation to write 
(22) simply as 

dw+w/\w=n, (24) 

and express a result of the metric condition in terms of 
an equation that will be of importance later. 

(25) 

where T[2J p is the linear space formed from antisym
metric pairs of vectors. The fact that at each point the 
metric provides a natural isomorphism between T[2J p 

and 10 means that the curvature tensor translates to an 
endomorphism of 10 with itself. In the same way, the 
metric induces an isomorphism of F2p with 10 • 8 The ap
proach of this paper will be to emphasize this central 
role of 1o, and thus its representations, in studying gen
eral relativity. 

In summary, the differential geometric structure of 
M can be expressed by a choice of a frame of forms p. 
The metric is then obtained from this choice according 
to (15) while the connection and curvature properties 
are described by (21), (18), and (24). The geometry it
self (in the sense of the metric) is unchanged by Lorentz 
transformation on p, so in this sense the appropriate 
description of the geometry is carried by the full set of 
Lorentz frames, B~*, at each point, each acted on tran
sitively by Lo. 

STRUCTURE EQUATIONS FOR F2p 

In this section we will translate the above geometirc 
formalism into one based on F2 p' First, ., ., must estab
lish a relationship between B: and the bases for F2p de-
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noted by E p with epEE p representing a matrix of six lin
early independent two -forms, {cp i}, i = 1, ... , 6. 
Clearly, 

cpl = tfi.bpa/\ pb, (26) 

for some quantities f ab which, for the moment, are to 
be regarded as fixed. Thus different ep' s are generated 
by different p's. How then is the choice of cp related to 
the choice of p and thus the metric? Assume that the 
metric has been defined by chOOSing the p used in (26) 
as a Lorentz frame, so that ds2 is given by (15) and 
p E B~* by definition. Consider the 6 X6 symmetric ma
trix illi defined by 

cpl 1\ cpi=AiJI, 

where 

1== po/\ pl A p2/\ p3. 

(27) 

(28) 

From the linear independence of the cp I, it follows that 
Aii is nonsingular, with inverse denoted as usual by AI}' 

This matrix plays the role of a metric on F2 p' 

We can now state the important converse to this rela
tionship: Any six independent two-forms satisfying (27) 
define uniquely (up to inversions, with which we are not 
here concerned) a basis p for which (26) is true. In 
order to prove this statement, it is sufficient to consi
der one particular choice for f ab and associated cp I 
Since, because of the assumed completeness of the cpi, 
any other set of cpl can be obtained as linear combina
tions of this particular one. The entire proof can then be 
translated into the other basis by a linear transforma
tion. Let us choose fab so that 

(29) 

and 

(30) 

where Eiik is the three-dimensional alternating symbol. 
The conditions (27) become in this case 

cpl+3I\cpi=OlJI, i.;;3, (31) 

and 

(32) 

Assume now that some other linearly independent set is 
given, say cp,i, satisfying (31) and (32). More preCisely, 
with respect to some bases, say p', the cp,; can be 
expressed 

(33) 

and (31) and (32) are satisfied with I replaced by I' 
==p'o/\ p,lA p,2A p,3. We must now show that p' can be 
adjusted so that gi'b = f abO To begin, consider the set of 
equations 

cp,l/\ cp,l=cp'4(\cp,4=0, (34) 

and 

(35) 

From (34) it follows that cp,1 and cp,4 are each simple 
two-forms, i. e., hook products of pairs of one-forms, 
while (35) implies that this set of four one-forms is in
dependent, and thus, by redefining the basis p', we can 
set 
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(36) 

and 

(37) 

The proof then proceeds by filling out the remaining cf> Ii 
similarly, with the only ambiguities arising being dealt 
with by reordering the index i. 

Further, we note that the action of the Lorentz group 
L o on the basis p gives rise to a corresponding group 
action on the basis 4> which preserves the "metric" Co.i' 
as defined by (27). This is, of course, equivalent to the 
antisymmetric two-tensor representation of L o' In a 
manner analogous to the restriction of the one-form 
bases B: to B~'" we can also define B ~ as the subset of 
B p generated by the group preserving Co.ii, denoted by 
L 0. 

For a fixed representation f ab' we can summarize 
these results: A metric can be specified in terms of the 
two-form F2 p structure by the conditions (27) corre
sponding to the choice of Lorentz basis p defined by (26). 
The equivalence class B 0p of such bases producing this 
metric, Co.!i in (27), corresponds to B~* for the one
forms. 

We now proceed to construct the structure equations 
with respect to F2p, defining the analogs of the connec
tion and curvature forms along the way. The metric in
duced isomorphism between lo and F2 p discussed in Foot
note 8 will play an important role. First, we note that, 
by lowering an index on the matrix of connection forms 
{wa b}' we obtain a matrix of forms {r i }, representable 
by the f ab. Thus there is a one-to-one relationship be
tween possible matrices of connection forms and ma
trices {ri} of one-forms defined by 

wab= r tab (r i ==Co.iir'). (38) 

In fact, we can use (27) to explicitly evaluate the r i 

r l == - iEabCdwarf' cd' (39) 

where now Eabcd is the totally antisymmetric symbol with 
E0123 = -1. On the other hand, by using the metric to 
raise the first index of the components of elements of 
F2 p' we can introduce the Lie algebra bracket operation 
on F2p 

[f ,Pt == f.ef'cb - f'a cf cb' (40) 

Because of the assumed completeness of the set f ab, we 
can find a set of constants (we are always assuming the 
f ab to be fixed and constant from point to point in M) 
SI J. such that 

[f, ji]=SIJ,f. (41) 

The Sii. will of course be recognized as the structure 
constants of lo with respect to the basis defined by the 

f ab• 
With this background it is now a straightforward mat

ter to write the differential structure equations. USing 
(26), (20), (38), and (41), we get 

d</> =[r, 1/>] (42) 

or, in terms of components, 

dcf>i =si'.r ,cf> •. 
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(44) 

in which the curvature is represented by the 6 x 6 matrix 
Rw 

Thus, we have a complete F2p representation of the 
metric, connection and curvature, described by (27), 
(43), and (44). Once a set of six independent two-forms 
cf>i is given satisfying (27) for the Co.iJ defined by the f ab , 
we can decompose them miquely into a basis p satisfy
ing (26). The differentials of the cf>i then give the connec
tion forms r! by way of (43), in which the Silk are also 
determined by the fab as in (41). As they stand, these 
equations do not appear to offer any advantage over the 
one-form equations (15), (20), (19), and (22). However, 
in the next section, we will find that the introduction of 
the complex structure J on F2p, in terms of the star 
duality operator which can be done only for Minkowski 
signature metrices and dimension four, enables us to 
re-express these equations in such a way as to produce 
a significant simplification of general relativistic field 
equations, especially the vacuum Einstein equations, in 
various representations. 

COMPLEX STRUCTURES 

The important role of F2 p' or equivalently its isomor
phic image lo, in the geometric structure equations 
given above leads us to investigate the structure of these 
spaces more closely. We will find a natural negative
square endomorphism on these spaces, J, which satis
fies the condition of being a complex structure in the 
mathematical sense. Using this, we will study the form 
of the complexifications of F2 p and 10' leading naturally 
to complex representations of the geometry associated 
with representations of the Lorentz Lie algebra. The 
most important of these representations correspond to 
the group SO(3, C), SL(2, C), the latter being the spinor 
representation. 

Now, let us define an operator Jon F2p in terms of 
the Minkowski-signature metric and the alternating, 
totally anti symmetric symbol, Eabcd for which 

(45) 

Let 'lfbe a two-form, having components 'lfab with re
spect to the basis p for which the metric is Yab• Define 
J'lf 

(46) 

Because we are dealing with a space-time of dimension 
four, J is a linear map of F2 p onto itself, and, because 
of the indefinite Signature of the metric, 

J2 = -1, (47) 

where 1 is the identity map on F2 p. Such a linear map 
of a vector space onto itself is called a "complex struc
ture." It will also be recognized, perhaps in more fa
miliar form, as the "star operator, " generally repre
sented by the symbol *. Here we have chosen the sym
bol J for two reasons: first, to emphasize its role in 
the complexification of the geometric structures in 
which it will be replaced by the usual imaginary number 
i == vCT, and, second, to stimulate investigation into the 
possibilities of regarding J as a variable operator in 
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terms of which general relativistic geometries can be 
described. This second approach will be developed in 
other papers. 

Now let us recall that the curvature can also be ex
pressed in this formalism as an operator of F2p onto 
itself as described in Eq. (44). Thus define the operator 
R on F2 p in terms of the 6 x 6 matrix A li' and the two
form metric fl. i }, 

R(CPI)==fl.I~ikCPk. (48) 

Now decompose the curvature operator R with respect 
to the complex structure J, 

R=P+Q, (49) 

where P and Q are the parts of R that commute and anti
commute with J respectively. Therefore, 

P = (R -JRJ)/2, 

Q= (R +JRJ)/2. 

(50) 

(51) 

It is now a straightforward algebraic matter to show that 
this decomposition corresponds to the more familiar de
composition of the components of the Riemann curvature 
tensor Rabed into Weyl conformal part, traceless Ricci 
part, and curvature scalar part. In fact, by using 

AilaJi ed=Rabed, (52) 

and the definition of J in (46), it follows that P depends 
on the Weyl plus curvature scalar part and Q on the 
traceless Ricci part, Rab - tYabR. Thus the weakend 
Einstein equations can be expressed by saying that the 

curvature operator on F2 p commutes with the complex 
structure J. See Chap. 13 of Misner, Thorne, and 
Wheeler5 for details of these calculations in terms of 
one-form components, Rabcd' 

In order to take advantage of this result, we note that 
the condition (47) satisfied by J leads naturally to a com
plexification of F2 p in which the F2 p regarded as a real 
vector space of six dimensions can be replaced by a 
complex vector space of three dimensions with the imag
inary scalar multiplication being associated with J. 
Thus, suppose that cp is some basis for F2 , and let cap
ital Latin letters, A, B, C, ... , assume O~IY the values 
1, 2, 3. Consider then the three complex dimensional 
vector space, F 2 cp spanned by the three complex two
forms oA, 

(53) 

Thus, F 2
cp is the set of complex two-forms (J that can 

be written 

(54) 

where the ZA are t.!.tree complex numbers. Similarly, the 
~onjugate space, F2cp is defined in terms of the basis 
oA, 

(]A == cpA - iJcpA. (55) 

It is easy to see that there is a one-to-one relationship 
between F2p and F2cp defined as follows. If 'l!EF2p, let 
the components of 'l! with respect to the basis (CPA, J CPA) 
be the six real numbers (xM YA) so that 'l! can be unique
ly written 

(56) 
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Defining the three complex numbers Z A by 

(57) 

we can then define the image of'l! in F 2cp as 'l!c, 

'l!c==ZAoA. (58) 

Conversely, the real 'l! can be obtained from 'l!C by 

'l! = ('l!q \jJC)/2 = (Z A oA + Z A QA)/2. (59) 

This relationship is clearly one-to-one and its consis
tency depends on the condition (47). It is this reduction 
of the dimension of the vector space from six to three 
by complexification here, and in the structure equations 
below, that makes this approach helpful. 

Next, we note that J commutes with the 1\ operator, 

(Jif?) /\ 'l! = if? 1\ J'l!, (60) 

and 

(61) 

Thus, regarding as an inner product on F2 , with met-
• • • P 

riC fl.' 1 , we see that this six-dimensional array com-
mutes with J and respects the division between oA and 
UA. That is, 

oA!\cf1=fl.ABI, (62) 

aA 1\ (joB = 0, (63) 

(1A 1\ as = t"AB I. (64) 

Note that (64) is merely the complex conjugate of (62) so 
that when working over the complex field, it is neces
sary only to satisfy (62) and (63). 

Similarly, it is easy to see that J commutes with the 
Lie bracket operation for two-forms. Thus, from the 
definitions (40) and (46) it follows directly that for any 
two-forms If> and'l! 

[Jif?, 'l!]=-[if?, J'l!], 

so that 

[Jif?, J'l!] = [if?, 'l!]. 

(65) 

(66) 

When these results are applied to the basis oA defined 
in (53) and (55), it follows immediately that the real 
structure constants Sl i k for which the indices run from 
one to six can be replaced by complex SAB c with indices 
running only from one to three, 

loA, cf1]=SAB caG, (67) 

loA, (;.B]=O, (68) 

(69) 

Finally, the differential structure equations (43) and 
(44) become 

doA =SAB cr B 1\ (Jc, 

dr c + tSAB cr A 1\ r B = P CA oA + Q CA OA • 

(70) 

(71) 

The matrices P and Q correspond to those defined in 
(50) and (51) so that the Einstein equations correspond 
to the condition 

(72) 

Further, P must be symmetric and, for the stronger 
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Einstein condition, R:::::: 0, traceless. Clearly then, the 
Einstein equations have a formal three-dimensional 
structure over the complex field. Of course, we must 
recall that the complex basis a", while containing only 
three elements, consists of two -forms over a four
dimenSional M.9 This apparent three-dimensional struc
ture will be analyzed in more detail in the follOWing 

, section. 

REPRESENTATIONS OF 10 AND THE EINSTEIN 
EQUATIONS 

Now consider how various representations of the 
Einstein equations correspond to representations of 1o in 
the two-form structure equations. 

First, we note that we can freely choose the metric 
~AB to be any nonsingular complex symmetric matrix 
by appropriate choice of baSiS, (a", OA). In particular, 
we can set 

(73) 

corresponding to 

a"=po/\ pA+ipBl\pc [A,B,C=cyclic (1,2,3)]. (74) 

Thus, when the basis a" is changed by an element of £0' 
the a" are transformed in such a way as to leave the in
ner product form 1iAB unchanged. Such a transformation 
belongs, of course, to the complex group SO(3, C) and 
this procedure can be described as the SO(3, C) repre
sentation of lo. 

For this baSiS, the structure constants have the form 

(75) 

since lowering and raising indices is accomplished by 
multiplying by i or - i, respectively, for the metric in 
(73). The Einstein structure equations become 

da" =iEABCr BA aG, 

dr G + (i/2)EABGr J\ r G =P GA a". 

(76) 

(77) 

The essential three-dimensional form of these equations 
can be more clearly displayed by using a three-vector 
notation, a= (a"), r = (rA), P = (pA B)' with the special 
symbol ~ representing the combination of hook form
product with three-dimensional vector "cross product. " 
Thus (76) and (77) become2 

da= - r0 a, (78) 

(79) 

This approach is obviously well suited for the Petrov 
analysis of the algebraic structure of the Riemann ten
sors of Einstein spaces. In fact, the basis (a") defining 
the geometry is arbitary up to a complex orthogonal 
transformation. Thus, the matrix P which carries the 
content of the curvature tensor can be freely 
transformed 

(80) 

Petrov2 found that most general P could be transformed 
as in (80) to one of essentially three different canonical 

for::
e 

I: P= (~g g), 
\~ 0 y (81) 
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type IT: P=(: ~-i ~ ), 

01 13+i 

(82) 

(: 10) 
type ill: P = 1 ~ i , 

o t a 

(83) 

where a, 13, yare arbitrary complex numbers, which 
can vary from point to point, of course. Further, the 
stronger Einstein condition, R = 0, requires O! + 13 + Y = 0 
for type I, a + 213 = 0 for type IT, and O! = 0 for type m. 

Hence, one natural approach is to choose for P one of 
these types, insert it into (78) and (79), thus reducing 
the freedom of choice for the basis a", at least in the 
nondegenerate cases. This technique has been used suc
cessfully to reduce the type III problem to one equation 
for one-function, for which a one-function family of 
solutions has been obtained. 10 Similar results can be 
obtained for the type N case (type II with O! = 13 = 0). 

However, the most intriguing possibility seems to lie 
in the general type I case in which no two of the O!, 13, Y 
are equal. Further, adding the a + 13 + Y = 0 condition re
duces the triple (a, 13, y) to two independent complex 
functions, precisely the number (if they are functionally 
independent) to uniquely determine a canonical set of 
coordinates for the base manifold M, as well as a fully 
determined basis for two-forms and thus one-forms. In 
other words, the "most general" Petrov case is the one 
in which the coordinate and frame degeneracy vanishes, 
suggesting that it might also be the one for which solu
tions could be easily obtained. Alternatively, it might 
be profitable to postpone the O! + 13 + Y:=: 0 condition and 
regard the a, 13, Y as a set of complex three-dimen
sional coordinates, solve the resulting three-dimen
sional structure equations and then search for ways to 
map the forms a" into two-forms over a four-manifold, 
satisfying also (62) and (63). 

A :~:::~e~a~)ed. approaoh Is based on the ohoioe (84) 

~01 
The structure equations can still be written as (78) and 
(79) but where the ~ symbol means 

(u~ V)1 =U1V 3 _ U3V 1 , 

(u~ V)2 = U 3V 2 _ U2V 3, 

(u~ V)3=U2V 1 _U1V 2 , 

(85) 

(86) 

(87) 

for a pair of complex three-vectors u and v. The alge
braic conditions (62) and (63) for the a" imply 

al/\ al = r? /\ r? = 0, 

al/\ cr = cr /\ as = iI. 

(88) 

(89) 

From these it follows that the a" can be decomposed in 
terms of two real, null, one-forms K, ,\ and a complex
complex conjugate pair fJ., jj., 
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cr=$K All, 
rr = $xl\ii, 

cr=i(K!\X + IlA ii). 
The metric is 

ds2 =2KX + 21lii. 

(90) 

(91) 

(92) 

(93) 

This approach is well suited for the study of gravita
tional radiation problems. In fact, the null vector dual 
to K can be chosen to be a "principal null direction, ,,11 

tangent to null geodesics representing gravitational rays 
by requiring P2 = O. This last condition can be met for 
any but the algebraically nondegenerate type I case. 

Let us now fix ~AB say to have the value given in (73), 
and consider the possibility of representing two-form 
geometric quantities in terms of various representations 
of lo. Such an n-dimensional representation can be spe
cified in terms of matrices TA '" a, a, {3 = 1, ... , n, whose 
matrix commutators have the SAB c for structure con
stants. In this case, 

(94) 

We can now use these matrices to represent the basis 
erA. First, let 1'''' a denote a matrix of two-forms lying in 
the linear matrix space spanned by the TA, that is, 

(95) 

for some (complex) two-forms cf> A' It is now easy to see 
that a necessary and suffiCient condition that the matrix 
1'''' /3 provide a basis satisfying (62), (63), and (73) is 
that 

1''''13'' 1'''" = t"'a" j, 

T"'aI\ i'''"=0, 

where 

t'" ,,~~ TA'" TB" a "- AB /3 ". 

(96) 

(97) 

(98) 

The quantities t'" l" will be recognized as the components 
in this representation of the metric associated with the 
Killing inner product defined on semisimple Lie alge
bras. 12 If we further restrict ourselves to faithful re
presentations, it is clear then that (96), (97), and (98) 
are the conditions that T rx a be decomposable according to 
(95) into a basis for F2 p satisfying (62), (63), and (73). 

The differential structure equations are now easy to 
write, 

dT= -[r, 1'], (99) 

which defines the connection forms r ={ r'" J in this re
presentation and 

dr -Mr, r]=iP '1', (100) 

which defines the Einstein curvature forms, p={p"'a"J. 
Again the satisfaction of the weakened Einstein equations 
is equivalent to the absence of the complex conjugate 
terms T on the right-hand side of (100). 

For example, consider the SO(3, C) representation. 
In this formalism, we would represent the basis by 
3 x 3 antisymmetric matrices of complex two -forms T. 

Because of the three-dimensional characteristic and the 
antisymmetry, however, we can go over to a three-vec
tor formalism, erA = ¥ABC~ c. ThiS, of course, leads 
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directly to (78) and (79) above. 

The basic representation of lo is, of course, the spin
or one. Here n=2 and the bases are represented in 
terms of 2 x 2 matrices 1''''/3 of complex two -forms belong
ing to the Lie algebra of SL(2, C) and hence required to 
be traceless, 

(101) 

This implies that there are only three independent com
ponents' say 1'\, r 2 , r 1 with 1'22= -1'\. By using Pauli 
matrices for the TA'" B' it is seen that the conditions (96), 
(97), and (98) reduce to 

1'\1\ 1'\= (-i/4)I, 

1'12/\ 1'21 = (- i/2)I, 

(102) 

(103) 

and all other products zero. Thus, these conditions are 
equivalent to (88) and (89), so that, again, the basis 
matrix 1''''13 can be decomposed into the radiation adapted 
one-form frame (K, X, Il, ii), as in (90), (91), and (92). 

The differential structure equations are given by (99) 
and (100) in which the curvature is represented by the 
matrix P'" l". If we add the R = 0 condition, the full set 
of algebraic conditions on this spinor representation of 
the Einstein curvature tensor becomes 

P'" a" " = P" " '" B' 

p"'","" =P"'/", = 0. 

(104) 

(105) 

By noting that the indices assume only the values 1,2, 
it is easy to see that there are only five independent 
components for a P'" /" satisfying (104) and (105). 
Penrose 3 has fully analyzed the properties of such a 
matrix in a manner analogous to that of Petrov for the 
SO(3, C) representation, resulting in a "principal spinor" 
decomposition. 

Finally, it should be noted that this formalism is well 
adapted to an extension in which the F2 P' or lo, structure 
at each point is regarded as the geometric part of a 
larger structure. For example, lo can be imbedded in 
the conformal Lie algebra referring perhaps to electro
magnetic or quantum mechanical symmetries. If the 
complex structure can Similarly be imbedded, the purely 
differential structure equations, (70) and (71), can be 
naturally extended to a set involving a mixing of the geo
metry and the other symmetries. This problem will be 
considered in another paper. 
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A unitary tensor product representation of the group so o(l,n), n =2,3,4, does not contain the 
trivial representation as a discrete direct summand unless each of the factors does. 

INTRODUCTION 

The following question arose in the course of an in
vestigation1 in quantum field theory: Can a tensor pro
duct representation2 D10 D2 0 ... 0 D I' where each D i is 
a (continuous) unitary representation of the group 
SOo(1, n), contain a vector which is invariant under the 
action of all the elements of the group? In other words, 
can the decomposition of such a representation into ir
reducible representations include the trivial (identity) 
representation? The answer is negative, at least for 
n = 2,3, or 4, unless each of the factor representations 
contains such an invariant vector (in which case the 
product of those vectors is invariant under the product 
representation). 

This theorem can be applied to prove uniqueness of the 
vacuum3 in a quantum field theory invariant under the 
de Sitter group 5°0(1,4), or in an analogous model of 
space-time dimension 2, invariant under 5°0(1,2). 
There4 one is led to construct a Fock space 

~ Efi 
1=:6 HI' 

/=0 

Ho=(£, Hl=D, H2=D0 D,"', 

where D is a Hilbert space supporting an irreducible 
unitary representation (or ray representation) of 
SOo(1, n). D is interpreted as the space of possible 
quantum states of a single particle. Since each H" is in
variant under the natural action of SOo(1, n), the theorem 
implies that the only invariant vectors in}- are those in 
the one-dimensional subspace H 0' representing the state 
with no particles present. 

The theorem will be proved first for SOo(1, 2) and then 
extended to the two next higher dimensions. 

TWO IRREDUCIBLE REPRESENTATIONS OF 
SOo (1,2) 

The irreducible unitary representations of SOo(1, 2) 
can be described in infinitesimal terms as follows. 5 Let 
Jo' Jl' J 2 be the standard choice of basis for the Lie 
algebra of the group, and Q =J1

2 + J 2
2 - J 0

2 be the 
Casimir invariant operator. Each representation 
possesses a basis consisting of vectors I q;p) , where 

Q I q;p) = q I q ; P), 

(J1±iJ2) Iq ;p) = [q+ P(p± 1)]1/2Iq; p± 1). 

The fixed number q parametrizes the representation (but 
does not determine it uniquely6)., and the index p labels 
the basis vectors within the representation. Besides the 
trivial representation (q = 0, p = 0) there are representa
tions corresponding to all positive values of q (the con
tinuous series) and to certain other values (the discrete 

series). In each nontrivial representation the range of 
p is a discrete set of pOints which extends by unit steps 
to infinity in at least one direction. These results are 
derived by observing that in a unitary representation the 
factors [q + p(p ± 1)]1/2 must be real numbers, and that 
the sequence of p' s in a representation can terminate 
only when one of these factors vanishes. 

Theorem 1: Let Dl and D2 be any two irreducible 
unitary representations of 500(1, 2), not both trivial. 
Then D10 D2 does not contain the trivial representation 
as a discrete direct summand. 

Prooj7: The argument is analogous to Pukflnszky's 
determination of the discrete representations which ap
pear in the tensor product of two continuous representa
tions. 8 Let the values of the Casimir operator for Dl 
and D2 be ql and q2' respectively. We must show that 
no vector 

'It = 6 app I ql ; PI) 0 I q2 ; P2) (infinite sum) 
1>1'1'2 12 

in the tensor product space is annihilated by all the 
basis elements of the Lie algebra of the tensor product 
representation. (The latter have the form 

JI=J;Dll01+ 10 J;D2l 

in an obvious notation. ) The condition Jo'lt = 0 implies 
that 'It is of the form 

'It =.0 ap lql;p)0Iq2; -P). 
I> 

Requiring that (J1 ± iJ2)'It= 0 leads (after taking a scalar 
product with each of the basis vectors) to the equations 

al>[ql + p(p + 1)]1/2 + ap+Jq2 + p(p + 1)]1/2 = 0, 

ap [q2 + p(p + 1) ]1/2 + al>+l [ql + P(P + 1)]1/2 = O. 

These are consistent only if ql = q2' and one then has 
ap+1 = - al> for all p in the range of p in the representation 
D 1 • [One must check pOints where the coefficient 
ql + P(P + 1) vanishes; but these simply mark the bound
ary of the representation D 1 .] It follows that non
vanishing a's satisfying at .. 1 = - al> must extend to infinity 
in at least one direction. Consequently, the sequence 
{ap} is not square- summable; no normalizable invariant 
vector can exist. 

Remark: The presence of an irreducible representa
tion D in a tensor product Dl 0 D2 is often detected by 
coupling the basis vectors of D1, D2 , and D-IT to form 
an invariant object, 9 where D-1 T is the representation 
contragredient to D. In the case of SOo(1, 2) this tech
nique has been used to calculate Clebsch-Gordan co
efficients and matrix elements of tensorial operators. 10 

The principle involved is demonstrated in the proof of 
Theorem 1, where one succeeded in constructing an in-
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variant from (and only from) two irreducible representa
tions with the same value of q and values of p of opposite 
signsl!; such representations are mutually contra
gredient. For the infinite-dimensional representations 
of noncom pact groups the invariant is not normalizable, 
in general, and hence does not constitute a trivial sub
representation of D1 @ D2 @ Dol T. 

MANY REDUCIBLE REPRESENTATIONS OF 
:SOo (1,2) 

Theorem 2: Let DJ (j= 1, ••. ,1) be unitary representa
tions of SOo(l, 2), not all of which contain the trivial 
representation discretely. Then D1 @ D2 @ ". @ D I does 
not contain the trivial representation discretely. 

Proof: Any representation, for instance D" is a direct 
integral12 of irreducible representations: 

D, = ftB dv(s)[j~"). D(s)]. 

Here D(s) ranges over the inequivalent irreducible rep
resentations, which are labeled by a parameter s; v is 
a measure on the space of allowed values of s; j~") is the 
multiplicity (which may be countable infinity) with which 
D(s) occurs in D,; and [j. D] denotes the direct sum of j 
copies of the representation D: 

[j.D]=DtB,,· tBD (j terms). 

We use such notations as D, and [j. D] to stand both for 
a representation in the abstract sense and for the 
Hilbert space in which the representation acts. In the 
latter sense an element of a direct integral fEB dv(s)H(s) 
is a functionf(s) taking values inH(s) which is square
integrable with respect to v: 

f dv(s)lIf(s)11 2

H <S) < 00. 

(We shall always realize the Hilbert spaces as gen
eralized L2-spaces in this way.) In particular, a mem
ber of D, can be thought of as a function {(s, is<")'P<s», 
where i<") is an integer in the range 1 '" i;") '" j!") and, for 
fixed s ~nd i<;>, {(s, i~"), pIs»~ is the coefficient of an 
element of the representation space D(s) with respect to 
a basis of eigenvectors of Jo' (Such coefficients were 
abbreviated as ap above. ) If the support of v(s) consists 
of discrete points, the direct integral is an ordinary 
direct sum. All the discussion below may be rephrased 
in terms of the spectral analYSis of the operators Q and 
Jo in the various representation spaces. 

We now prove the theorem by induction. (The major 
step is from irreducible to reducible representations, 
after which the extension to more than two factors is 
immediate.) Theorem 1 says that the product of two ir
reducible representations, D(r) and D(s), has a direct 
integral decompOSition 

D(r)@D(s)= fEB dwr.s(t) [j~w) . D(f)] (1) 

in which fo, the value of f corresponding to q = 0 and 
p=o (the trivial representation), does not appear as a 
discrete point [i. e., wrs ({ fo}) > 0 is not true, where {to} 
is the set whose only member is fo]. We assume that this 
statement has been extended to a tensor product of 1 - 1 
factors (l ~ 2), which may themselves be reducible 
(direct integrals). Thus . 

tB 
D1@ ... @D 101 = f d/l(r) [j~u). D(r)], 
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where the same restriction with regard to the trivial 
representation holds. Then we have 

D1@,,·@D1 

= {ftB d/l(r) [j~u). D(r)]} @ {ftB dv(s) [j~"). D(S)]} 

= ftB d/l(r)dv(s) [(j;.u) j!"». (D(r)@D(s»]. (2) 

The associative law used here is obvious if the direct in
tegrals are direct sums; that it holds in general is most 
easily seen by observing13 that the elements of the space 
on either side of the equality sign are functions of the 
type f(r, s, i;u), i<;), p< r), pIs»~. 

Combining Eqs. (1) and (2), we have 

D1 ® ... @D1= ftB d/l(r) dv(s) dWr,.(t) 

x [(j~u)j~")ji"'»' D(t)]. 

An element of this space is of the form 

f(r, s, f, i~u), i~"), i~"'r,s),p<t». 

(3) 

If this vector is different from zero in the L2-space 
sense, then, for some set of values (r, s) with positive 
measure, the functions f(r, s, f, ... ) with fixed rand s 
are nonzero on sets of positive measure in f. Hence it 
is impossible that f could have its support concentrated 
at f = fo-which was to be proved. An intuition for this 
part of the proof can be acquired by imagining the inte
grals in Eq. (3) replaced by direct sums; then one would 
just "collect terms" corresponding to each value of f 
and observe that to is never present. 

The proof of Theorem 2 involves only the general 
properties of direct integrals. Consequently, it applies, 
with appropriate changes in notation, to any Type I 
group (see Ref. 12) for which the analog of Theorem 1 
can be proved. 

REPRESENTATIONS OF SOo (l,n) 

By arguments closely analogous to those just given 
for SOo(l, 2), the corresponding theorems can be proved 
for SOo(1, 3) and SOo(1, 4), on the basis of explicit for
mulas for the irreducible representations of their Lie 
algebras. A rather obvious conjecture is that the con
clusions are valid for all SOo( 1, n). 

Theorem 3: Let D j (j = 1, ... ,1) be unitary representa
tions of SOo(1,n), n=2, 3, or 4, not all of which contain 
the trivial representation discretely. Then D1 ® D 2 @ ". 
@ D, does not contain the trivial representation 
discretely. 

Proof for SOo(1, 3): The representations of the Lie 
algebra corresponding to irreducible unitary group 
representations are given by Naimark. 14 For brevity 
only the information directly relevant to the proof will 
be cited here. There are six independent generators, 
H j and F J• j = 1, 2, 3; the H J generate a subgroup iso
morphic to SO(3). [Under the usual physical interpreta
tion of SOo(1, 3) the HI generate rotations and the F J gen
erate Lorentz boosts. ] The irreducible unitary rep
resentations are labeled by pairs of numbers (c, ko), 
where (among other restrictions) ko is a nonnegative 
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integer. The most general vector in a representation 
D= (c, ko) has the form 

.. k 

E E akmlD; k,m), 
Il=ko m=-k 

where 

and 

H3ID; k,m)=m ID; k,m), 

(HI ± iH2 ) ID; k, m) = [k(k + 1) - m(m ±1)]1/2 ID; k, m ± 1), 

F3ID; k, m) = [k2 - m 2]1/2 C(D; k) ID; k - 1, m) 

-mA(D;k) ID;k,m) 

- [(k + 1)2 - m 2 ]1/2 C(D; k + 1) ID; k + 1, m), 

with similar formulas for Fl ± iF2• Here 

A(c,ko;k)=icko/[k(k+ 1)], 

C(c, ko ; k) = ik-1 [W - k~) (k2 - c2)/( 4k2 _ 1)]1/2. 

Following the proof of Theorem 1, we consider the 
general vector in the tensor product of two irreducible 
representations, D 1 ® D2 : 

>¥= 6 I; t ~ ak m~", ID1 ; k1, m 1) 
k1=ko1 "'1=-k1 k2=k02 ~=-k:l 1 1 2 

If >¥ is invariant, it must be annihilated, in particular, 
by H3 and He Hence one sees, by direct verification or 
by knowledge of the 50(3) Clebsch-Gordan coefficient 

( I 
( 1)k1+"'1 ( )-1/2 "-

k1k2m 1m 2 00) = - 2k1 + 1 vk1R:! 0"'1'-"'2' 

that 

>¥= t a
k
(2k+1)1/2I D l,D2 ;k,0), 

k=ko 

where 

k 

=(2k+1)"1 / 2 6 (-1)"'ID1 ;k,m)®ID2;k,-m). 
m=-k 

We operate upon this vector with 

F3=FiD1) ® 1 + 1 ®FiD2) , 

obtaining, after some redefinition of summation indices, 
.. k 

F3>¥= 6 E (- 1)'" 
k=ko "'=-k 

X {[k2 - m 2]1/2[C(D1 ; k)ak 

- C(D2 ; k)ak-l] ID1 ; k -1, m)® ID2 ; k, -m) 

-mak [A(D1 ;k)-A(D2;k)] ID1 ;k,m)®ID2 ;k,-m) 

- [k2 _ m2]1/2[C(D1; k)ak-l 

- C(D2 ; k)akJ ID1 ; k,m)® ID2 ; k -1, -m)}. 

Every coefficient in this expansion must vanish if >¥ is 
invariant; hence 

A(D1 ; k) =A(D2 ; k), 
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It follows that C(D1 ; k) = C(D2 ; k) and, most importantly, 
that ak=ak-l unless C(D1 ; k)=O. (The formulas for A 
and C then imply that k01 = k02 ~ ko and c1 = c2 ; i. e. , 
Dl =D2 ·) 

For a nontrivial unitary representation (c1 imaginary 
or I c1 1 < 1), we have C(c1 , k01 ; k) = 0 only when k = kOl ' 

Thus the coefficient a k has the same value for all k in 
the representation (k ;? ko = k01 )' Since the vectors 
WI' D2 ; k, 0) are normalized, the "norm" (squared) of 

>¥ is 

t lak l2 (2k+ 1)= 00, 
k=ko 

and >¥ is not in the Hilbert space. This establishes the 
analog of Theorem 1. 

The argument of Theorem 2 now applies to complete 
the proof. 

Proof for SOo(l, 4): Since the ideas are the same as 
before but the explicit formulas become voluminous, we 
simply outline the argument. The representations are 
given in a convenient form by Strom. 15 There are ten 
generators: the M j (j= 1, 2, 3) generate 50(3), the P j 

and M j generate SO(4), the N j and M J generate SOo(l, 3), 
and Po (which commutes with the M j ) completes the Lie 
algebra. The basis vectors of an irreducible representa
tion D of 500<1,4) are ID; n, 1 ;j, m), where j and mare 
SO(3) indices, and nand 1 label representations of 
SO(4).16 

The normalized SO( 4)-invariant vectors in a tensor 
product of two 500(1,4) representations are of the form 

Z-1 j 

E l: (-1)}+'" ID1 ; n, 1 ;j, m) 
j=lnl "'=-j 

01D2 in, 1 ;j, -m). 

[Since the structure of the representation formulas for 
50(4) is very similar to that for SOo(1, 3), this result 
can almost be read off from our conSiderations above 
on the construction of SOo(1, 3) invariants. ] The most 
general vector >¥ in the tensor product is a linear com
bination of such vectors (summed over 1 and n), with 
coefficients which we may denote anZ ([2 _ n2)1/2. 

One operates on >¥ with Po [as given by Ref. 15, Eq. 
(3.3), with identities among the coefficients stated on 
p. 458], and requires in the result that the coefficients 
of linearly independent basis vectors vanish. Just as in 
the lower-dimensional cases, one concludes that I anzi 
= I an,!.! I = ... for infinitely many values of the 1 index. 
Thus an invariant vector cannot exist with a finite norm, 

1I>¥112 = 6 I anz I2 W - n2
). 

I.n 
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(3.1) the factor l2 - (j+ 1)2 should be z2 _)-2 (S. strom, private 
communication) • 
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In the moment formulation. the direct-interaction approximation equations have been derived by 
developing perturbation about three different states: the laminar flow (Wyld), a turbulent flow 
(Kraichnan), and the Gaussian random process (Phythian). Along the parallel line, the pertubation 
theories in the distribution function formulation have also been developed about the same three 
states: the laminar flow (Balescu-Senatorski). a turbulent flow (Herring), and the Gaussian random 
process (Edwards). Herring's modal energy and averaged Green's equations are the basic turbulence 
equations of the distribution function formalism. The modal energy equation, however, represents the 
simultaneous-time limit of Kraichnan's covariance equation. This paper provides a unified statistical 
mechanical framework for the three turbulence theories of the distribution function formalism. We 
have first revised the derivation of Balescu and Senatorski and then presented an alternate method 
for Herring's self-consistent-field approximation in terms of the action-angle variables. Finally, we 
have shown that Edwards' theory cannot give the totally correct stationary dynamics because it is 
not possible to uniquely determine the dynamic friction and diffusion coefficient in the distribution 
function formulation. 

1. INTRODUCTION 

Shortly after Kraichnan1
•
2 presented the direct-inter

action approximation (DIA) equations, Wyld3 has demon
strated an alternate derivation by first developing per
turbation about the laminar flow and then consolidating 
certain classes of the expansion terms of all orders. 
The DIA is the moment formulation, thereby addressing 
itself to the covariance evolution. Instead, it is also 
possible, and equivalent in a limited sense, to evolve 
the distribution function of fictitious eddy particles as 
in statistical mechanics. For the Liouville equation for 
the eddy motion, Herring4

•
5 has devised the self-con

sistent-field approximation (SCFA), thereby obtaining 
the modal energy and averaged Green's equations. The 
SCFA equations represent the simultaneous-time limit 
of the DIA equations. The main point of this paper is to 
show that the theory of Balescu and Senatorski6 rede
rives the SCFA equations by the laminar perturbation 
and renormalization. Hence, it bears the same relation 
to Herring's SCFA as does Wyld's theory to Kraichnan's 
DIA in the moment formulation. 

Balescu and Senator ski begin with the triad-interaction 
representation of homogeneous turbulence and resolve 
the velocity field variables into action-angle coordinates 
(Sec. 2). The advantages of the action-angle representa
tion are twofold: Only the reduced distribution function 
averaged over all angle variables enters into the iso
tropic turbulence theory (Sec. 3), and the nonlinear 
interaction is elegantly expressed by the transition 
matrix (Sec. 4). The disadvantage, however, is that it 
cannot represent the Gaussian random process. 7 At this 
point, we introduce the important ingredient of non
equilibrium statistical mechanics developed by the 
Brussels? school. It is the general kinetic equation. We 
shall show by a simple derivation that it represents an 
elaborate rearrangement of the Liouville equation under 
iterative perturbation (Sec. 5). 

The kinetic equation is derived formally and hence ap
plies in principle to the turbulent eddy motion as well as 
the statistical mechanical systems. We must, however, 
recognize the divergence of fluid turbulence from the 
classical many-body problems (Sec. 6). (i) In the homo
geneous turbulence, we have artifiCially created the 

concept of discrete, denumerable degrees of freedom 
corresponding to the Fourier modes. Since the number 
of Fourier modes in a box volume L3 is also propor
tional to L 3 , the number of eddy particles and the box 
size are not independent. Hence, the thermodynamic 
limit ri. e., the concentration (N /L 3

) being finite as the 
number of particles N - 00 and the volume L 3 

- 00] has 
no important part in the turbulence theory. (ii) In the 
classical statistical mechaniCS, the distribution function 
may be factorized as a consequence of molecular chaos. 
In the homogeneous turbulence, however, the factoriza
tion is implied by Kraichnan's weak-dependence hy
pothesis. 2 Kinematically, in the limit as L - 00, homo
geneity requires the Fourier modes to be statistically 
independent just as stationarity demands the random 
process to have orthogonal increments. (iii) For the 
fully developed turbulence theory, we can suppress the 
destruction fragments which represent relaxation of the 
initial correlation by means other than the triad inter
actions. This is indeed in accordance with Kraichnan's 
maximal-randomness hypotheSis. 2 (iv) The renor
malization requires a new ingredient called the Green's 
operator. Since the theory of the Brussels school does 
not involve the explicit formulation for the Green's 
operator equation, Balescu and Senatorski have guessed 
at it from the nonlinear interaction diagram. Here we 
derive the Green's operator equation from the kinetic 
equation. 

The kinetic equation together with the Green's opera
tor equation provide a sufficiently general basis for 
deriving the modal energy and averaged Green's equa
tions. Upon renormalization, they agree with the SCFA 
equations (Sec. 7). Renormalization calls for estab
lishing one-to-one correspondence between the con
solidated term and a class of perturbation terms. This 
tedious renormalization may be avoided by developing 
perturbation about a turbulent flow which has the same 
Green's operator as the actual turbulent flow (Sec. 8). 
Herring's SCFA also relies on this sort of perturbation 
scheme (Sec. 9). 

The covariance of the DIA involves the two indepen
dent time arguments, say t and t', so that we can 
evolve the covariance in the entire t-t' plane. In the 
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distribution function formalism, the covariance is de
fined in terms of the reference and difference times. 
Since the reference time runs along t = t f

, the evolution 
of the modal energy is restricted to the diagonal of the 
t-t' plane. More specifically, the modal energy equation 
represents the simultaneous-time limit of Kraichnan's 
covariance equation. We cannot directly recover the 
DIA equations from the Liouville equation. This is the 
inherent limitation of the distribution function formalism 
(Sec. 8B). A further limitation shows up in Edwards' 
theory8 of stationary turbulence dynamiCS. There we 
cannot simultaneously determine the dynamic friction 
and diffusion coefficient. This is why Edwards' theory 
yields the dynamiC friction with a relaxation factor 
different from Herring's SCFA (Appendix B). 

Diagrams are used in this paper only as a shorthand 
notation for bulky mathematical expressions. Hence, we 
do not execute any algebraic operation with the diagrams. 

2. EQUATIONS OF EDDY MOTION 

The Navier-Stokes equations describe the motion of 
fluids as continuum. In the homogeneous flow, we can 
formally decompose the continuum dynamics into an 
equivalent many-degrees-of-freedom problem by 
Fourier analyzing the velocity field in a box of side L: 

(
211)3/2 

Uj(x, t) = L Z; Uj(k, t) exp(ik· x), (2.1) 

where 

k= ~ n, n=(::). n .. n"n,=.ll intege" . 
Then, the incompressible Navier-Stokes equations will 
give rise to the Fourier-amplitude equations which are 
infinitely coupled through the convolution sum 

(:1 + Vk2) Uj(k, t) 

(2.2) 

where v is the kinematic viscosity and P jJ(k) = 15 jJ - kjk/ 
~. Since the incompressibility kjUj(k, t)=O restricts 
the motion to a plane perpendicular to the wave vector 
k, we may span U j(k) by polarization vectors6 

Uj(k, t)= 6 ef(k)u"(k, t). (2.3) 
u=1.2 

By definition, the polarization vectors E"(k) are per
pendicular to k, kjEf(k) = 0, and orthonormal 
€j(k) e~(k) = 15 "". Further, the orthonormal vectors 
(e1(k), ~(k), k/k) satisfy the identity ~ "e~(k) ej'(k) 
=Pjj(k). Upon introducing (2.3) into (2.2), we obtain 
the equations of eddy motion involving the three
Fourier-mode interactions 

(2.4) 

where the coupling coefficient is 

<1>: : ~:~ = [k· e"( q) J [e"(k) . e"(p) J. 
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We have documented9,10 the advantages of the triad
interaction representation (2.4) over the Fourier-am
plitude form (2.2); hence it needs no further elaboration 
here. 

In the remainder of this section, we put (2. 4) in an 
alternate form convenient for the statistical mechanical 
formulation. Because of the reality requirement u" *(k) 
= u"( - k), we may rewrite the convolution sum as 

p<t + 

= 6 uA(p)uP(k - p) + L) uA(p)uP*(p - k) 
p vt 

+ tU"*(P)uP(k + p), (2.5) 
p 

where ~; implies the sum over all p> O. Splitting (2. 4) 
into the real and imaginary parts by u"(k) = v"(k) 
+ iwU(k), we obtain the equations with the positive wave 
vector domain (k> 0) 

(~ 2) (V"(k») = (211)3/2 + 

at + vk w"(k) L e ~ 

where 

and 

s(k- p)= {k- p, 
. p-k, 

k>p, 
k<p, 

k>p, 
k<p. 

(2.6) 

Since v" and wI' are the 2D Cartesian coordinates, we 
may transform them to a sort of polar coordinates 
known as action-angle variables 

v"(k)=1)i~~ COS211~t,,,, 

w"(k) =1)i:~ sin211~t, .. · 

Therefore, the triad-interaction representation in 
action-angle variables becomes 

~t, .. + 2vk2
1)t ... 

=-2(211/L)3/2H ~ {<I>:\~;S(:-P)1)!(:-II)'P Sin211A 

+ <l>t :~:~t+II) 1)ti.2p).p sin211B} 1)!:: 1)i:;, 

. 1 (211)3/2 • { "IA P 1/2 ~t ... =- 211 -L 66 <l>tlp:s(t_II)1)s(1:_p),pCOS211A 
At" P 

(2.7) 

+ <I>::~;~t.p)1)ti;lI) ,P COS211B} 1)!~: 1)t!~2, (2.8) 

where the ,dot denotes a/at and A = ~t ... - ~P." - S ~&(t-p).P 
and B = ~t ... + ~p.A - ~t.P.p. Note that the above differs 
from Eq. (2.10) of Ref. 6 by the factor 2(211/L)3/2, Be-
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cause of the square root, the action variable itself 
represents the modal energy (divided by density) 

T/t .... = V"'(k)2 + W "'(k)2. (2.9) 

The action-angle variables are canonical in classical 
mechanics. In the inviscid limit, (2.8) obeys the 
Liouville theorem 

(2. 10) 

implying invariance of the measure of a point set in the 
phase space. 

3. THE LIOUVILLE EQUATION 

In the phase space spanned by T/ = {T/t • ...} and ~ = {~t .... }, 
the evolution of the distribution function F(T/, ~,t) is 
governed by the continuity equation 

of 
iff=L F, 

where the Liouville operator is 

~ {o. o.} L =-LJ 6 a:;;-T/t .... + ~~t ..... 
:t u. ·Ik,u. <;t,u 

(3.1) 

Because of (2. 10), we can therefore reduce (3.1) to the 
so-called Liouville equation 

OF + {. a . o} at = - 66 T/t .... a:;;- + ~t .... ar- F. 
t u "IkrlJ t,u 

(3.2) 

Since it is not any more advantageous to use (3.2) than 
(3.1), we shall directly work with (3.1) and hereafter 
call it the Liouville equation. The flow system may be 
rendered conservative by suppressing the viscous ef
fect: Either drop the viscous term altogether or couh
teract the dissipation by external forces. The measure 
of F is time-invariant for conservative systems; we 
may then normalize F for all t 

f dr7 f d~F(T/, ~,t)=1. (3.3) 

Let us expand the distribution function with respect 
to the periodic angle variables: 

(3.4) 

where {m} represents the set of all integers 
{ ... , m t .... ,···} and m~ = 2:k l: ... m t .... ~!r. ..... Multiplying 
(3.4) by exp(- 2i1Tm'~) and integrating over all ~, we 
find that tIm) (T/, t) are the Fourier coefficients. In 
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particular, we have 

t lO) (T/, t) = f d~ F(T/, ~, t). (3.5) 

That is, tIO)(T/, t) is a reduced distribution. We shall 
show presently that it plays the central role in the 
isotropic turbulence theory. 

Isotropic energy spectrum 

In the homogeneous field, the spectral tensor is de
fined by 

q; lik, t) - Uf(k, t}U lk, t), (3.6) 

where the overbar denotes ensemble average. In terms 
of the action-angle variables, we find that 

Ut(k)UJ(k) 

= 6 Ej'(k)E~(k)T/i;~T/~;: exp[-i21T(~k.u - ~Ir..)]. (3.7) 
.... " 

Therefore, by averaging over the distribution function 
(3.4), the spectral tensor takes the form 

q;llk)=P Ej'(k) Ef(k) f dT/T/t.uilo) (T/, t) 

+ 6 E"'(k) E"(k) f dT/ T/1 /
2 T/ 1

/
2 

u~v I J t,,, t,v 

(3.8) 

where {It, ... , - I t •v}= { ... ,0, m k , ... = 1, mlr.,v = - 1, 0, ... }. 
Denote the first integral of (3. 8) by 

(3.9) 

Let us now suppose that 

(ii) [t .... (t) are independent of /l, (3. lOb) 

(iii) [t .... (t) are functions of k. (3.10c) 

Then, by identifying 

where E(k) is the energy spectrum, the spectral tensor 
reduces to the well-known isotropic formll q; Ilk) 
=PIJ(k)E(k)/41Tk2

• Clearly, (3.10) states the isotropiC 
requirements: (i) imposes the reflexional symmetry, 
(ii) guarantees the rotational symmetry, and (iii) de
mands the spherical symmetry of isotropic scalar func
tions. For the isotropic theory, therefore, tlO) is all 
that we need to compute the energy spectrum. 
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TABLE I. Typical simple transitions. 

Type Mathematical expression Vertex diagram 

(0 IL '~t'f,',"1l±Q 1m' Q.,a: = 1, m' q',B = -1, m' Q_q',,, = -1) 
q ,a 

= fn(21T)3/2(¢0l1IBIY ... _B __ <ii8IYI,a. _B _ _ ¢YI0l, 8 • __ B_)1)~~~1)~'~81)~~,y 
v 2 L " <I ,<1-.. B1) II' 11-11,11 B1) • B II-II 111,11 lI... • Q.,a I q, ""'I4,_q ,,, E q',f3 

q_q', y 
II (mll,a = 11 L '~:f",Y_. I m' II' ,B = 1, m' q-II' ,y= 1) 

III 

IV 

4. TRANSITION MATRIX 

Let us introduce (3.4) into (3.1). By separating out 
the Fourier components f{m)(T), t), we obtain an equivalent 
infinite set of Liouville equations 

2:; (m IL Im')f{m,)(1), t), 
{m') 

(4.1) 

g,a £ q~f3 

~ q_ql,y 

ql, f3:r q,a 

q_q', y 

+ cp~ :~;~+p T)~!:.P 1i(m~,,, + a - m t .. ) 

x 1i(m'p,~ + a - mp.~)1i(m~+p.p - a - m t+P •p)} 

x n 1i(m~, ,a - mt'.Il<)· 
11 '#t,p,t:l:P 
a:'#u. ,A,,a 

1574 

(4.5) 

where 

Again, compare i(27f/L)3/2 with the factor - (i/2)(27f/L)3 
in Eq. (2.18) of Ref. 6. 

(miL Im')=j d~exp(-i27fmOL exp(i27fm'~). (4.2) 

We shall compute the elements of (4. 2) by introducing 
the Liouville operator 

(m IL Im')="t B (m IL~.,Jm') 
t " 

+ 2:;+ 2:; (m IL''''~'P 1m'). t,P.t:p 
kiP U,A,P 

(4.3) 

Here the first term reflects the angle-independent vis
cous effect 

o 
(m IL ~ . ..I m') = 2vk2 -0 -T)t ... 1i(m - m'), 

T)t. " 

and the second term is derived from the nonlinear 
interaction 

(m IL' /L.x.P 1m') t.P.tzp 
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(4.4) 

The simple transitions 

Following the Brussels school, we shall call 

TYPE I 

TYPE II 

TYPE m 

E
q 
q' 

q_ql E
q 

q' 

q'-q 

q,> q,y 
q-q' q'-q 

TYPE ~ :' ~ 
q-q'/ 

q' q~ 
q'-q 

FIG. 1. Simple transitions (O!, /3, and'Y deleted). 
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(m Ii 1m') the transition matrix from state {m'} to {m} 
(always read from the right to left). We then see that 
the viscous term induces no state transition, whereas 
the nonlinear interaction brings about transitions be
tween the states which are constrained by the 6 functions 
in (4.5). Since the isotropic turbulence theory evolves 
around the state {m}={O}, we shall consider a class of 
transitions, called the simple transitions, between the 
states represented by m = ° and ± 1. By the complete 
enumeration of (4.5), we find 12 distinct simple transi
tions. They can, however, be divided into four types, 
each having the typical member as shown in Table I. 

In the table, there appears the symmetrized coupling 
coefficient 

(4.6) 

Note that we have introduced the factor 2-1
/

2 into the 
simple transitions, so as to avoid double counting the 
elementary interactions composed of two simple transi
tions. The first simple transition (Type I) of Table I is 
obtained as follows: Consider {m} = {O } and {m'} 
={, ... ,O,m'q,,,,=1,m'q',a=-1,m'q-q,,y=-1, ... }. There 
are six ways that transition from {m'} to {m} can be 
realized: 

(i) (q, a)=(k, Il), (q', j3)=(p, A), (q - q' ,y)=(k-p, p), 

(ii) (q, a)= (k, Il), (q', j3)=(k -p, p), (q -q' ,y)=(p, X), 

(iii) (q, a)=(p, A), (q', (3)=(k, Il), (q -q' ,y)=(p-k, p), 

(iv) (q, a) = (p, A), (q', (3) = (p - k, p), (q - q' ,y) = (k, Il), 

(v) (q, a) = (k + p, p), (q' ,j3) = (p, A), (q - q', y) = (k, Il), 

(vi) (q, a) = (k + p, p), (q', (3) = (k, Il), (q - q' ,y) = (p, A). 

The transitions (i) and (ii) give the term multiplied by 
<P~::';q_q .. Similarly, (iii) and (vi) give the term multi
plied by <P:': :_':, q' and (iv) and (v) the term multiplied by 
<pq~q,l~::'. Upon adding these, we obtain the simple 
transition of Type I; the remaining three types can be 
verified similarly. 

Since the simple transitions have bulky mathematical 
expressions, it is convenient to have a shorthand notation 
for them. To this end, we adopt the vertex diagram 
constructed by the following rules: (i) Represent 
(m I L' 1m') by a small circle to which we attach lines 
for the nonzero elements of {m} and {m'}. (ii) Place the 
lines (if any) for {m'} to the right of the circle and the 
lines (if any) for {m} to the left of the circle. And, (iii) 
attach an arrowhead pointing to the left for the lines 
corresponding to the positive elements of {m} and {m '}, 
an arrowhead pointing to the right for lines corres
ponding to the negative elements. By using this diagram
matics, the simple transitions can be represented by the 
vertex diagrams of Table 1. The two other transitions 
of each type are shown in Fig. 1. For each diagram of 
the figure, the conjugate pair is obtained by simply 
reversing the arrowheads. Of course, the particular 
configurations of the diagrams are immaterial because 
they are a topological representation. 
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Now we can convert the vertex diagrams into the 
corresponding mathematical expressions by the following 
recipe: (i) Assign a plus sign to the incoming arrows 
and a minus sign to the outgoing arrows (at each vertex, 
the incoming and outgoing wave vectors add up to zero). 
(ii) Interpret the open circle as the summation of three 
lines attached to it. (iii) Associate the line with the 
indices, say q and a, with 

[where (q', (3) and (q - q', y) are the indices of the two 
other lines] if it appears to the right of the circle, and 

if it appears to the left of the circle. And, (iv) intro
duce the factor (i/{2) (21T /L )3/2 to complete the expres
sion. With this convention, we can recover the mathe
matical expression for any of the vertex diagrams in 
Fig. 1. 

5. THE GENERAL KINETIC EQUATION 

After having defined the simple transitions, Balescu 
and Senator ski follow very faithfully the theoretical ap
paratus of nonequilibrium statistical mechanics de
veloped by the Brussels school. The starting point, and 
by far the most essential step, is the general kinetic 
equation which was originally derived by Prigogine and 
Resibois. 12 In fact, it represents a rearrangement of 
the products of transition matrix elements which would 
appear under the iterative solution of Liouville equation. 
The derivation of Prigogine and Resibois involves de
composition and rearrangement of the iterated transi
tion matrix elements with the aid of the diagrams; how
ever, Zwanzig13 has later presented an analytic deriva
tion using the projection operator technique. For the 
purpose of demonstrating the gist of kinetic equation, 
we present here an elementary derivation for the leading 
terms of the kinetic equation. In turbulence work, how
ever, the lowest-order terms are kinematically very 
important because they share the same structure with 
the renormalized lowest-order terms. In this respect, 
the present derivation is more than an illustration: It 
actually serves as a practical tool in the subsequent 
discussion. 

For the notational compactness, rewrite (4.3) as 

(m IL 1m') =L 0 6(m - m') + (m Ie 1m'), (5.1) 

where 

+ 

L' = ~ ~ L' ~:;::'p. 
:t,p IJ"X.P 
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Then (4.1) takes the form 

af(m)(7), t) -Lof ( t) '" ( IL'I ')f ( ) "t - (m) 7), + l..J m m (m') 7), t .' 
U (m') 

(5.2) 

By treating the second right-hand side as the inhomo
geneous term, the formal solution is 

f{ml<''7, t) = exp(L °t)f{ml(7], 0) 

+ E 1'dt' exp[C(t - t')] 
(m') 0 

x(mIL' Im')flm') (7], t'). (5.3) 

Now solve this by iteration. The iterative solution of 
the second-order is 

f lm ,(7], t) = exp(Ct)flml (7) , 0) + L: t df exp[C(t - t')] 
1m', 0 

X(mlelm')exp(rt')flm,)(7), 0)+ E E {dt' 
(m') 1m'" 0 

tion of the Brussels school has the form 7
•
14 

aflmt<7], t) L of ( t) +f) (t) at = 1m' 7], mm' 

(5.7) 

Here the destruction and diagonal fragments are given 
respectively by 

(5.8) 

Cm(t) = (21Ti)-1 ~ dz exp(zt) t ",(z), 
c 

(5.9) 

where 

x,C' df' exp[C(t - t')] (m IL' 1m') exp[,C(f - f')] flmm' (z) 

X(m' IL'lm")flm'" (7), f/). (5.4) 

Upon differentiating with respect to t, we obtain the 
following equation which is a simple variation of (5.2) 
without any approximation: 

Oflml(7], t) 
at 

= Cflm) (71, t) + L; (m IL' 1m') exp(Ct)flm' 1(71, 0) 
Im'l 

+ L; L; t dt' (m Ie Im/) exp(C(t- t')] 
1m') 1m") 0 

x(m/IL ' Im")flm,,)(7), t'). (5.5) 

We have therefore decomposed the second term of (5.2) 
into the last two terms of (5.5), which may be con
sidered as the equivalent interaction terms. By iterating 
(5.4) to higher orders, we can further decompose the 
second term of (5. 2) into arbitrarily many equivalent 
interaction terms. Upon singling out the term for {m"} 
= {m}, we obtain at once the leading terms of the 
general kinetic equation 

a/1m, (71, t) 
at 

= C f lm)('7, t) + E (m Ie Im/) exp(L °t)flm ,)(71 , 0) 
1m') 

+ L; fdt'(mIL' Im/)exp[C(t-f)](m' lelm) 
1m') 0 

Xflm)(7),f)+"., (5.6) 

where the three dots denote the double sum 

We shall show that the second and third terms of 
(5. 6) are the respective leading terms of the destruc
tion and diagonal fragments. The general kinetic equa-
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(5. 10) 

(5.11) 

The subscript irr implies that no intermediate state is 
identical to {m}. Note that (5. 8) and (5. 9) are the 
standard inverse Laplace transforms with the usual 
integration path denoted by Pc' Considering the leading 
terms of (5. 10) and (5. 11), we have 

(5.12) 

Cm(t) = L; (mlL'lm')exp(Ct)(m/IL'lm)+ ... (5.13) 
1m') 

In (5. 13) we have used the decomposition formula 

(m lAB I m') = E (m 111 1m") (mil 113 1m'), 
Im"l 

where A and 13 are operators involving (z - L 0)-1 and L' . 
The substitution of (5.12) and (5.13) into (5.7) verifies 
that the leading terms of the destruction and diagonal 
fragments are identical to those derived in (5. 6). 

6. TOWARDS THE TURBULENCE APPLICATION 

The kinetic equation has been derived formally; hence 
it applies to both the turbulent eddy motion and statisti
cal mechanical systems. Since the Similarity between 
the eddy motion and classical many-body problem is 
superficial, the application of (5. 7) to turbulence must 
take into account the divergence between them. The 
classical statistical mechanics deals with a system of 
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N particles contained in the volume L3. Then, the con
centration (N /L 3

) must be finite in the limit as N - 00 

and L - 00, thereby assuring finiteness of the intensive 
thermodynamic properties. 7 This thermodynamic limit 
must therefore be incorporated into the construction of 
a distribution function in order for it to be physically 
sensible. In turbulence, however, we have artifically 
created the concept of discrete, denumerable eddies 
corresponding to the Fourier modes. Since the number 
of Fourier modes in a box volume L3 is also propor
tional to L3, the number of eddies and the box volume 
are no longer independent parameters. Consequently, 
the thermodynamic limit plays no important role in the 
turbulence theory. Often the position coordinates are 
Fourier analyzed in statistical mechanics. 7 The use of 
Fourier representation there has the purpose of re
ducing the unperturbed Hamiltonian to a diagonal form, 
whereas the interaction Hamiltonian becomes off-di
agonal. This therefore permits approximation of the 
interaction Hamiltonian in terms of the vacuum state. 

Under the disguise of deceptive simplicity, (5.7) 
actually represents an infinite perturbation expansion 
about the laminar flow. To bring it to a form useful 
for turbulence work, we must therefore introduce such 
turbulence concepts as Kraichnan's weak-dependence 
and maximal-randomness hypotheses and Green's 
operator. 

A. The product hypothesis 

Let us assume factorization of the distribution function 

Here, rp(T/",,,, t) is the single mode distribution 

rp(T/",,,, t) = t,,,) dT/flo)(T/, t), (6.2) 

where f(t,,,) denotes the integration over all action 
variables except T/t . For a conservative system, 
(3.3) implies the n~;malization 

(6.3) 

In the classical mechanics, the factorization is a con
sequence of moler".!lar chaos. In turbulence, (6.1) states 
the statistical independence of Fourier modes in the 
homogeneous field. In the limit as L - 00, homogeneity 
requires the Fourier modes to be statistically indepen
dent just as stationarity demands the random process 
to have orthogonal increments. Indeed, the product 
hypotheSis embodies Kraichnan's weak-dependence 
hypotheSis. In Appendix A, we shall briefly show that 
the cycle approximation (Sec. 6D) of kinetic equation 
cannot generate statistical dependence from the initial 
independence. 

B. The destruction fragments 

The destruction fragments represent relaxation of the 
initial correlation by means other than the triad inter
actions. For the fully developed turbulence theory, it 
is therefore natural to suppress the destruction frag
ments 

aflm)(T/,t) Of ( ) jtdl ( ) ( ,) 
at =L Im)T/,t + 0 tEmt-/, flm)T/,t. (6.4) 
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We must, however, specify the initial condition flm) (1),0) 
which will then be relaxed through the diagonal frag
ments. The suppression of destruction fragments is 
consistent with Kraichnan's maximal-randomness 
hypothesis which postulates the fully developed turbu
lence to be as random as is possible consistent with the 
Navier-Stockes dynamiCS, but not at all dependent upon 
the initial and boundary conditions. 

C. The Green's operator equation 

The general kinetic equation is useless for strong 
turbulence, unless we can consolidate it by summing 
up certain classes of the expansion terms of all orders. 
This consolidation process is called the renormalization. 
To carry out renormalization, however, requires the 
Green's operator equation. Balescu and Senatorski 
suggested the Green's operator equation from the in
spection of the interaction diagram (their propagator 
equation given by Fig. 8 of Ref. 6 is in error; no double 
line should appear along the cycle loop). Here we shall 
derive the Green's operator equation. This is not an 
unusual proposition because the Green's operator 
exp(L t) also satisfies the Liouville equation. 

Recall that flO) is the average of F over all ~, and flm) 
are the fluctuation amplitudes with different periods. 
Let us consider the perturbation of flO) induced by a 
disturbance to the mode (k, jJ.) and denote it by tIl ), 

where {1", ,,}= { ... , 0, m t ,,, = 1, 0, ... }. Then, its ~qua
tion can be written down from (6.4): 

afu ) (1), t)/at 
le." 

We now extend the product hypothesis 

In analogy to (6.1), this amounts to factoring out the 
averaged Green's function from the velOCity covariances. 
After inserting (6.6) into (6.5), the integration over all 
1) but T/t." yields the Green's operator equation 

aq(1)le,,,' t)/at=L;,,,g(1)t.u' t) 

+ t dt' J d7j El (t - t') o (ttU) til-' 

X Cq'V)IJ",U) rp(1)q,V, t l »)q(1)", .. , t'), 

with the initial condition Q(1)t,1' , 0) = 1. 

D. The cycle approximation 

(6.7) 

The leading term of the diagonal fragments for {m} 
= {o} is 

Co(t) = L; (oiL'im')exp(Ct)(m'iL'iO). (6.8) 
1m') 

Recall that (OIL' I m') and (mIlL 1 10) have the three sim
ple transitions of Types I and IV, respectively (Fig. 1). 
For the sum z: [ m ,), we must therefore consider all 
possible combinations of these transitions. Using the 
vertex diagrams, we have 
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+~ 

+ t :0 {three diagrams as in the above 
t u,l.,p 

with the arrows reversed}, (6.9) 

where the double line with the index (k, !l) is the diagram 
representation for exp([ ~'IJ. t). In view of (2.5), we can 
combine the three diagram terms in the curly bracket 
under one sum 2:1>' Since the two sums over k are the 
same, (6.9) finally reduces to 

k'lL 

+@'A to(t) = 2:0:0 :0 
t p "'.~,P k -P,p 

(6.10) 

Similarly, the simple transitions of Types nand m 
give the lowest-order diagonal fragments for {m} 
= {l lt"j 

p,A 

(6.11) 

Since the diagrams of (6. 10) and (6.11) have the con
figuration of a closed loop connecting two vertices, they 
are referred to as the cycle approximation. 

7. PERTURBATION ABOUT THE LAMINAR FLOW 

The kinetic equation together with the Green's opera
tor equation provide a sufficiently general basis for 
deriving the modal energy and averaged Green's equa
tions. The theory of Balescu and Senator ski, however, 
involves only the kinetic equation with the viscous ef
fect suppressed, and they introduce a propagator equa
tion into the formulation during their "simple renor
malization" process. As mentioned in Sec. 3, the vis
cous effect must be counteracted by suitable external 
forces. This is because the use of macroscopic viscosity 
amounts to injecting irreversibility into the statistical 
dynamics in an artificial manner. Nevertheless, the 
viscous term in perturbation suggests the structure of 
dynamic relaxation by the nonlinear inter:action. Hence, 
the presence of viscous term, properly counteracted, 
will not detract from the conceptual consistency. In 
fact, the simple renormalization of Balescu-Senatorski 
is automatically accomplished by the viscous term. 
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A. Modal energy equation 

Differentiate (3.9) with respect to t and insert (6.4) 
for af{OI/at. With the use of (6.10), we then have 

alt.IJ.(t) J d {o ( ) 1t -a-t- = 'I'/'I'/t.u. L f{o) '1'/, t + 2 0 d6 

X~J? .z.;" M 
~ 

(t-8) 
(7.1) 

where the three dots are the higher-order terms of the 
diagonal fragments. Referring to the formulas in Table 
I, we can readily recover the corresponding mathemati
cal expression for the diagram term (by dropping 
!l, X, P and abbreviating iP~ 1 ~:~ by <lit, etc.): 

(7.2) 

Carry out the '1'/ integration with the product hypothesis. 
Always assume cp('I'/t, " , t) and acpjO'l'/t." to vanish as 
'I1t - 00. Multiplying out the square brackets. we find 
tfurt the expression operated by ¢pa /a'l'/p + <Pt • p 0 ja'l'/t.p 
of the first bracket integrates out to zero. After partial 
integration, the modal energy equation becomes 

(a~ + 2I1k2)It.u(t)=(~ y ~ E J: d6 

X{(¢;I~:~.»)2G~,u.(t- 6, 6) 

x U;.~(t - 6, 6) U~.P.p(t - 6, 6) 

- ¢t I;:'., <p;I;.,:; Uk, ... (t - e, 6) 

xG~,~(t- 6, 6)U~.pjt- 6, 6) 

- ¢;I;:~-p ¢t-:I::; Ut,u(t- 6, 6) 

x U;,A(t - 6, 6) G~_pjt - 6, 6)} + "', 

(7.3) 

where the three dots are the higher-order terms. The 
Significance of the statistical functions 

U~. u<t - 6, 6) = J dr}t, ... 11~~! exp[{ L,(t - 6)]11~~! cp('I'/t,u' 6), 

(7.4) 

Gt.u(t - 6, e) 
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will be explored presently. 

First, consider the velocity components 1'/~~; at time t 
and t + T. During the time interval T, the flQw system is 
assumed to evolve by the adjoint operator of L ~,,,. We 
then assert that U~,,,(T, t) is the covariance of such two 
velocity components. For the simultaneous-time argu
ment, U~.,,(T, t) reduces to the modal energy It,,,(t). This 
is because U~,,,(O, t) is the average of two 1'/~~~, both at 
time t, weighted according to cp(1'/t,,,, t); 

(7.6) 

Now suppose that the flow system under consideration 
has the Liouville operator L~,,,. Then the average of 
1'/1/2 at time t and 1'/1/2 at time t + T is13 given by 

trU kru 

(7.7) 

where l~,,, = - 211k2 1'/t,,,0/01Jt,,, is the adjoint of L ~,,,, By 
partial integration, we can reduce (7. 7) to the 
covariance 

(7.8) 

Secondly, we show that the averaged Green's function 

is identical to the phase-correlation function. Expanding 
out exp(L ~," T) in (7.8), we obtain by partial integration 
that 

The square bracket is the phase-correlation function. 
By the expansion of exp(L ~," T) in (7.9), we find that the 
square bracket of (7. 10) is nothing but the averaged 
Green's function. Hence, this leads to the fluctuation
dissipation relation for a conservative system in ther
mal equilibrium! 

(7.11) 

With the use of (7. 11) the right-hand side of (7.3) is 
expressed in terms of I and GO. To complete the 
statistical formulation, we must therefore derive an 
equation for G:'". 

B. Averaged Green's equation 

We begin with the turbulent averaged Green's function 

which is defined by replacing exp(L ~," T) in (7.9) with 
the Green's operator g(1Jt,,,, T). Now differentiate (7.12) 
with respect to T and insert (6.7) for 0g/OT. With the 
use of (6. 11) we then have 
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oGt.JT, t) 
aT 

= - J dryt,,, 1J~~! {LtO, " Q(1'/t,,,, T) + .r: dB ft,,,) dry 

PtA 

ktlL 

(7.13) 

By consulting Table I, we can readily write down the 
mathematical expression for the diagram term 

(7.14) 

Again, the expression operated by ¢p 0/01'/ p + (J)t-p a /01Jt_p 
of the first square bracket integrates out to zero. Fur
ther, (J)t o/01'/t of the first square bracket operating on 
¢t a /01Jt of the second square bracket gives no contri
bution. Hence, the averaged Green's equation becomes 

(7.15) 

where the three dots represent the higher-order terms. 
The initial condition is Gt , ,,(0, t) = 1. 

C. Renormalization 

The modal energy and averaged Green's equations are 
the laminar perturbation expansions; hence they are of 
no use unless the nonlinear interaction is weak. For 
strong turbulence, Wyld has shown that certain classes 
of expansion terms can be consolidated, thereby in
corporating the dynamic effect of a certain kind of the 
nonlinear interactions of all orders. Although Wyld's 
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work is based on the moment formulation, his observa
tion is valid for the distribution function formulation be
cause of the diagram similarity. Of all the expansion 
terms in (7.3) and (7.15), there are those made up of 
compo siting a number of the respective first-order 
terms. Then summing up such expansion terms amounts 
to replaCing uo- U and GO- G in (7.3) and (7.15). In 
analogy to (7.12), we define the turbulent covariance 

Ut.JT, t)= f dl1t.u l1~~;q(l1t,u' T)l1~~;qJ(l1;t.u' f), (7.16) 

by replacing exp(G,uT) in (7. 8) with the Green's opera
tor. Balescu and Senatorski justified this heuristic re
normalization rule by invoking Resibois' factorization 
theorem15 which asserts that if two subgroups of eddies 
are temporarily interacting independently one from the 
other, the time ordering between the interactions in
volving eddies of the first group and eddies of the second 
groups is completely irrelevant. In any event, the 
modal energy and averaged Green's equations have the 
renormalized lowest-order contribution: 

= (211)3 '£ '£ f dB 
L p A,p 0 

X {(<ii~ 1~:~_p)2 Gt . .,(t - B, B) U P.x(t - B, B) U t_pjt - B, B) 

- (j)~:~:~-p~it-::i' Ut.u(t- B, B)Gp,~(t- e, e) 

x Ut_p,p(t - e, e) - (j)~~::_p 4>k-;it~ Uk." (t - e, e) 

XUp.>.(t- e, B) Gt_p.p(f- B, e)}, (7.17) 

GT + vk
2 
)Gt.u(T, t) 

= _ !(211)3 '£ '£ { de 
2 L p >.,p 0 

X {(j)i' :~:~_p (j)~:lt-;:i'Gk,u( B, t) Gp.x( T - B, B) 

x Ut_p,p(T- e, e) + (j)~i~;:-p (j)k-:',i':; Gt.u(B, t) 

XUp.x(T- e, e) Gt_p,p(T- B, e)}, (7.18) 

with Gt • ,,(0, t) = 1. And, the fluctuation-dissipation 
relation in renormalized form, 

Ut ..,( T, f) =It,,,(t) Gt , u( T, f), 

provides the link. 

(7.19) 

We shall show in Sees. 8 and 9 that (7.17)-(7.19) are 
Herring's SCFA equations. They describe the evolution 
of covariance for the simultaneous-time arguments 
and prescribe the covariance for the nonsimultaneous
time arguments by (7.19). Since Kraichnan's DIA 
evolves the covariance in the entire f-t' plane, we show 
the correspondence between (7. 17)-(7. 19) and the DIA 
equations in the simultaneous-time limit. According to 
the definitions (7.12) and (7.16), the reference time t 
refers to the overall flow system, whereas the dif
ference time T reflects the dynamic relaxation. To 
accentuate the dynamic relaxation, we shall therefore 
suppress the reference time argument: 
Ut.u('r,t)-Ut,u(T), and Gt • .,(T,t)-Gt,,.(T). Invoking the 

isotropy requirements (3.10), we impose the rotational 
symmetry, U".u(T)=U,,(T)/2, I t •u(t)=I,,(t)/2, Gt,u(t) 
= Gt(T); and the spherical symmetry, U,,(T)=U(k, T), 
I,,(t)=I(k, t), Gt(T)=G(k, T). Further, identify I(k, f) 
with U(k, f), implying that I(k, t) is the simultaneous
time covariance U(k, t). After summing over j.L, we 
obtain the isotropic form of (7.17) and (7.18): 

(a~ + 2Vk2) U(k, t) 

= 21Tk f dB f f dp dq pq {a(k, p, q)G(k, f - B)U(P, f - e) 
o <l. 

x U(k - p, t - B) - b(k, p, q) U(k, t - B)G(p, t - B) 

XU(k - p, t - e)}, (7.20) 

(a~ + Vk2) G(k, T) 

= - 11k [ dB f f dp dqpqb(k, p, q)G(k, T - B)G(p, B)U(k - p, B). 
o <l. 

(7.21) 

Here we have used the usual notations: 

lim (21T/LP I;-- f dp=21T if dpdq(Pq/k), 
~- p <l. 

a(k,p, q) = (1- xyz - 2Z2y2)/2, 

and 

b(k,P, q)=(p/k)(xy + Z3), 

where x, y, z are the cosines of the interior angles op
posite to the legs k,P, q, respectively. Note that a and 
b are derived from 

~ «(j)t' 1;;:_p)2 = 2k2( 1 - xyz - 2Z2y 2) 
IJ,tA,P 

and 

We see that (7. 20) and (7.21) are identical to the iso
tropic DIA equation in the stationary turbulent field, 
evolving along the diagonal of the t-t' plane. 2 

8. PERTURBATION ABOUT A TURBULENT FLOW 

In Sec. 7.3, renormalization was carried out by 
simply replacing exp(L. ~,uf) in the first-order laminar 
expansion terms by the Green's operator. Of course, 
this recipe is too heuristic to stand up to a rigorous 
argument. As in Wyld's work, it is necessary to dem
onstrate that the renormalized term actually includes 
a certain class of the expansion terms of all orders. 
Such a renormalization procedure is indeed very tedious. 
We shall therefore propose a way out of it, thereby 
avoiding the actual summation of laminar expansion 
terms. A lesson learned from the heuristic renor
malization is this: If we would develop perturbation 
about a reference flow state which has the Green's 
operator q(l1t.", f), then the modal energy and averaged 
Green's equations will have the lowest-order terms 
given directly by (7.17) and (7.18). Unlike the laminar 
perturbation, we do not know a Priori the reference flow 
state. In the present perturbation, therefore, we must 
treat the reference state as an unknown and determine it 
along with the turbulence dynamiC equations. This sort 
of philosophy is common to recent turbulence 
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theories. 4,8,16 

Let us go back to the Liouville equation (5.2). Intro
duce an arbitrary operator L II with the requirement 
that it be decomposable L" = L; L" L t',,,. We add 
{" f lm )(11, t) to both sides of (5.2) and put it in the form 

aflm~~11,t) =L Tf{m)(11,t)+:\ 6 (mIL'lm')f{m,)(11,t) 
1m'} 

-:\2L" flm) (11 , t), (8.1) 

where L T = L 0 + L ". The ordering parameter :\ is in
troduced into the above. No claim is made of authority 
of the particular orders assigned to the right-hand side 
terms of (8. 1): It is justified a posteriori from the 
structure of the nonlinear interaction terms. This 
arbitrariness cannot be eliminated from the dynamic 
consideration alone. Hence, herein lies the vulnerability 
of present turbulence theories which must cope with a 
strongly interacting many-body problem but with no 
parameter to guide us in developing a systematic ap
proximation. For:\= 1, (8.1) reduces to the original 
problem (5.2). The zeroth-order problem (:\ = 0) is the 
reference flow state. Since it is not known a priori, we 
do not seek a conventional perturbation expansion in 
powers of:\. Rather, the aim is to choose the zeroth
order problem in such a way that it can best approximate 
the actual turbulence dynamics in a statistical sense. 

Following Sec. 5, we derive a kinetic equation with 
the diagonal fragments of 0(:\2) 

af{m} (11 , t) 
at 

=Cflm)(1],t)+:\ 6 (miL' Im')exp(L Tt)flm,)(1],O) 
1m'} 

+:\2 (6 t df' (m IL' Im') exp[[ T(t - f')](m' II' 1m) 
1m') 0 

X/lm}(1], f} - L" flm} (1], t»), (8.2) 

Suppose that we wish to describe the actual turbulence 
dynamics by the zeroth-order problem 

af lmd;1], t) = L T f lm )(11, t). (8.3) 

Since L T is decomposable by definition, we see that 
(8.3) is readily amenable to solution, whereas the 
original problem (5.2) may not. In order for (8.3) to 
represent the actual turbulence dynamics, we must 
require that the second and third terms of (8.2), both 
multiplied by:\, vanish identically: 

0=:\ '0 (mlL'lm' )flm,)(11,t) 
1m') 

+:\2 (6 t dt' (m IL' 1m') exp[[ T(t - t')] (m' II' 1m) 
1m') 0 

Xf lm )(1], t') - L" f lm }(1], f»). (8.4) 

In the first term, we have replaced exp(L Tt)f{m' )(1], 0) 
by f{m,}(1], t) because they are related to each other by 
the solution of (8.3). Since the transition matrix does 
not allow {m'}= {m}, the first term of (8.4) makes no 
contribution. Therefore, the operator satisfying 

L" f{m} (1], f) = 6 rt df' (m II' I m') exp[[ T(t - t')] 
1m'} -b 

(8.5) 
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assures fulfillment of (8.4). The zeroth-order problem 
can thus approximate the acutal turbulence in that L" 
describes certain of the nonlinear dynamiCS. 

A. Turbulence dynamic equations 

The introduction of (8.5) into (8.3) gives 

aflm} (1], f) =L Of (11 t) + '0 It dt' (m IL' 1m') 
af 1m}' 1m'} 0 • 

xexp[L T(t-t')](m' II' Im)flm}(1],t'). (8.6) 

This is identical to the lowest-order of (6.4), if we 
replace exp(L 0t) by exp(L Tt). Consequently, the modal 
energy equation derived from (8.6) would be the same 
as (7.1) except the double lines are replaced by bold 
lines representing exp(L[,,, t): 

al", ,,(f) J ( 0 It -a-t - = drJ 11t,,, L flO) (1], t) + 2 0 dO 

ktJL 

~ 
~ 

(t-8) (8.7) 

Hence, this should directly give the renormalized modal 
energy equation (7. 17). The turbulent covariance and 
averaged Green's functions are defined respectively by 
(7.16) and (7. 12) with the identification 

9'(1]t,,,, 7') = exp(Lt:" 7'). (8.8) 

Next, the averaged Green's equation is given by the 
prescription 

(8.9) 

We note from (8.8) that 

ag(1]t. ", 7') =LT 1.(1] 7'). 
a7' t,":::t t. ,,' (8. 10) 

For the evaluation of the right-hand Side, consider the 
identity 

(8.11) 

Under the product hypothesis (6.6), we integrate (8.11) 
over all action variables except 1]" ,,..: 

LL g(1]t.", 7') 

=L;,,,Q(1]k,,,, 7')+ I: dO '0 '0 J d1]p. A d11t_p •• 
II A •• 

PtA 

x kt 

(8. 12) 



                                                                                                                                    

1582 Jon Lee: Statistical mechanical approaches to fluid turbulence 1582 

After the fina! integration over 1111 and 11k-v' we have 

Lt: ... Y(lIt .... , T) 

=Lto .... Y(lIt .... ,T) + t(21T/L)3 2:; '6 [de 
v ~.P 0 

(8.13) 

Upon introducing (8. 13) into (8.9), we recover at once 
the renormalized Green's equation (7.18). 

Finally, (7.19) is recovered by a procedure similar 
to that we used to derive (7.11). Although Li .... now in-
volves 1I~;~ a /a1)t.u1)i:~ in addition to a ja1)t . ... 1) k .... , both the 
expansion of exp( L[ .... T) and partial integration can be 
carried out just as in Sec. 7A. In this way, we have 
rederived the SCF equations as the first-order perturba
tion about a turbulent flow state but without summing 
the laminar expansion terms. Conceptually, we can 
extend the kinetic equation (8.2) to higher orders in A, 
thereby including in the operator L T the dynamic effect 
of arbitrarily complicated interactions. This, however, 
does not seem to be a workable way of refining the 
turbulence theory because such a series, even if we 
find one, is likely to diverge. 17 

B. Covariance equations 

From the covariance definition, we can obtain two 
kinds of covariance equations. For the first kind, we 
differentiate (7.16) with respect to T: 

= J d1)t, ... 1)i:~a, ... Y(1)t .... , T) 1)i;;cp(1)t .... , t). (8.14) 

Since it has the same form as (8.9), we can immediately 
write down the equation for Uk • ...( T, t) in T by replacing 
Gt . ...(e,t) in (7.18) by ut .... (e, t). The use of (8.14) is in 
deriving the fluctuation-dissipation relation, which we 
have already deduced by the direct term-by-term com
parison of the covariance and averaged Green's fun
tions. Therefore, (8.14) provides no new information in 
our theory. Without going into detail, we point out that 
the autocorrelation equation of Balescu-Senatorski is 
basically of this kind, although they have incorporated 
the evolution of rp(1)k .... , t) by another kinetic equation. 

Next, to derive the second kind of covariance equation, 
we reintroduce into (7.16) the factor 

which is unity. Now the differentiation with respect to 
t rather than T gives 

aUt .... (T, t) 
at 

= J d1) 1)i:; Q(1)t, ... , T)lI~:~ [a/(O,(1), t)jat]. (8.15) 

The introduction of (8. 6) into the above gives 
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= (21T)3 2:; 2:; t de 
L v ~.P 0 

(8.16) 

We have used the identity (dropping /J.) 

f d'IJt1)~/2exp(L:T)1)i/2 a:
t 

1)i/
2 F 

= - J d1)t 'lJi /2 expel ~ T)F, 

where F is a function of/(O" Note that (8.16) is a trivial 
generalization of (7. 17). It evolves along the simul
taneous-time argument just as (7.17). In the distribution 
function formalism, all that we can do is to describe 
the covariance evolution along the diagonal of the t-t' 
plane, whereas the relaxation in the off-diagonal is pre
scribed by the fluctuation-dissipation relation. This is 
the inherent limitation of the distribution function for
mulation. In contradistinction, the DIA can evolve the 
covariance in the entire t-t' plane by two statistical 
equations, one in t and the other in t'. Since the modal 
energy is the simultaneous-time limit of the covariance, 
the momen~ formulation can provide more complete 
statistical information than the distribution function for
malism. In some applications, however, the one-time 
nature of the distribution function formulation is a 
blessing rather than a curse because it trades the ease 
of computation for the loss of statistical information. 

9. HERRING'S SELF·CONSISTENT-FIELD 
APPROXI MATION 

Herring's SCF A also represents perturbation about a 
turbulent flow field and hence is in spirit very similar 
to the present perturbation theory. To comment on the 
SCFA, we shall rederive (8.6) by transcribing Herring's 
procedure to the triad-interaction representation in 
action-angle variables. Again the Liouville equation 
(5. 2) is the starting point. We propose to examine the 
following kinetic equation: 

a/{m' (1) , t)/at= lot dt'L H(t - t' )/(m' (1) , t') 

+ 2:; t dt' V mm' (t - t')/{m' ,(11, t'). (9.1) 
(m" 0 

Here, L H(t_ t') is an arbitrary, but decomposable 
Liouville operator L H = 'i,k 'L Lt~ ... , and the operator 

Vmm.(t - t')= - L H(t_ t') 6(m - m') + L 06(t- t') 6(m - m') 

+<mIL'lm')6(t-t') (9.2) 

is defined so as to relate (9.1) with (5.2). In parallel to 
(8. 3), the aim is to describe the actual turbulence by 
the kinetic equation of a simpler form 
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0fi~I(1/, t)/ot= 10' dt' L H(t- t')ffI".}(1/, t'). (9.3) 

By the superscript H, we are allowing for the possibility 
that I f .. } may be different from the actual distribution 
function at any stage of approximation. Associated with 
(9.3) is the Green's equation 

og (m}(1/, t - t')jot= t de L H(t - e)g{ml(1/, e - t' ) + 6(t- t'), 
o 

whose solution is 

g{m,(17, t- t') 

(9.4) 

t fJ 
=1+~, deIa de'L H{e-(1)g{ml(17,e'-t'). (9.5) 

By treating the second term of (9. 1) as the inhomo
geneous term, the formal solution becomes 

l(m)(1/,t)=fi'!.,{17,t)+ ~ t dt' g{ml(1/,t-t') 
Im'l 0 

x /' de Vm .. ,(t' - e)/{m')(17, e). (9.6) 
o 

Now solve this by iteration 

11m' } (1'/, t) = 11!.'}(1'/, t) + ~ rt dt' glm' } (1'/, t - t') 
(m"I.io 

f' xl deV .... m"(t' - e)ff ..... ,(1'/, e)+ •••• (9.7) 
o 

The iterative expansion (9.7) can be consolidated into a 
closed form by using the auxiliary operator satisfying 
a Dyson's equation; however, such is superfluous be
cause the leading terms are all we need explicitly for 
the present purpose. 

The formulation thus far has been formalistic. To 
initiate the SCFA, we apply 2: (m') (m IL' I m') to the right 
of (9.7): 

= ~ (m IL' Im')/fm"(1'/, t) + fI ~ l dt' { de 
(m" 1m' Im"l 0 0 

X (m I L' 1m') g'm'} (17, t - t') V m'm,,(t' - e)/{!.'1 (1'/, e) + .... 

(9.8) 

At this point in the perturbation theory, it is important· 
to observe the following steps in the order to be stated. 
First, we identify the right-hand side of (9. 8) with the 
last term of (5.2); hence we write 

of{ml(1/, t)fot- L °/{m'(1'/, t)= rhs of (9.8). (9.9) 

Secondly, we replace I (m} with II!, on the ground that 
the two distributions must eventually be indistinguish
able, if the perturbation scheme is expected to work: 

01 fml(r}, t)jot - LOll!' (17, t) 

=~ (miL' Im')/fm,,(r},t) + ~ ~ f dt' (de 
{m', (m" 1m") 0 

(9.10) 

This second step should not preceed the first. That is, 
if we had applied 11m, - I{!, directly to (9. 8), it would 
have resulted in cancellation of the two terms adjacent 
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to the equality sign. Since the transition matrix 
(m I L' 1m') does not allow {m}= {m'}, the first right
hand side term of (9.10) makes no contribution. Simi
larly, only the (m' IL' 1m") 6(t- t') of V .... m. will contri
bute to the last term of (9. 10): 

o I(!, (17, t)/ot = LOll!, (17, t) + ,p" t dt' (m IL' 1m') 

xg{m,,('I1,t-t')(m'IL' Im)/(!.,(1'/,t'). (9.11) 

Upon identifying g{m' ,(17, t - t') with exp[L T(t- fI»), (9.11) 
agrees with (8. 6). We have thus demonstrated Similarity 
between Herring's SCFA and the present perturbation 
procedure. 

10. STATIONARY TURBULENCE DYNAMICS 

Let us examine the stationary behavior of (7.17) and 
(7.18). Suppose that CP(17t",) has the stationary 
distribution 

(10.1) 

Since qk,u= 10'" dr)t ,u17t, ucp('I1t,), it is the stationary value 
of the modal energy, It,a - q'tt..u as t- 00. It is well known 
that (10. 1) is the steady solution of a Fokker-Planck 
equation7 

(10.2) 

where wt is the dynamic friction. The random process 
cannot be'Gaussian in action-angle variables; hence 
(10.2) is not the more familiar Gaussian Fokker
Planck equation. Since L T is decomposable, the zeroth
order problem (8.3) can be written down for each (k, Il) 
(by dropping Il) 

o cP ('11 k' t)/ot=L ~ CP('I1k' t). (10.3) 

We shall consider here a particular operator 
representation 

L I = Wt [~k (qlt.17k(J~t + 17k) - ~ ( 1 + 2~kk ) l (10.4) 

Note that the Fokker-Planck operator of (10.2) appears 
in the first parenthesis. On the other hand, we have 
introduced the second parenthesis so as to expand L i in 
terms of the associated Laguerre polynomials of order 1. 
Although this choice is not unique, the expansion of 
L: by the Laguerre polynomials of other orders will 
lead to the same stationary dynamics. Formally, the 
Green's operator of (10.3) is exp(L It). Since the 
Green's operator enters into the covariance and aver
aged Green's functions, our immediate goal is to 
derive a concrete representation for it. 

To this end, we consider the eigenvalue problem18 ,19 

(10.5) 

which for the eigenvalues r t = 1,2,3, .•. has the eigen
functions 

(10.6) 

where L;t(x) are the associated Laguerre polynomials 
of order 1. Here the associated Laguerre polynomials of 
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order 5 are defined by differentiating the Laguerre 
polynomials s times, L;(x) = d3L,(x)/dr, and satisfy20 

Xd2L~(x)/dx2 + (5 + 1- x)dL~(x)/dx+ (y- s)L;(x)=O. 

Associated with (10.5) is the adjoint eigenvalue problem 

Z Tt 'ifi't(1]t>'= - wt Yt 'ifi't(1]t), (10.7) 

where the adjoint operator is 

-~( 1 + 2~:)). (10.8) 

The eigenfunctions of (10.7) are 

'ifirt(T1t)=(;:Y/2 L;t(;:) (10.9) 

for the eigenvalues Yt = 1, 2,3, .. ·. Note that 1f!, and lP, 
form a set of biorthogonal (normalized) eigenftnctions

t 

.( drh 1f!'t(1]t) ~rk (1]t) = 5't 't' (10. 10) 

Now the Green's equation for (10.3) is 

ag{T/t, 1]\, t, t' )/at = L ig(1]t. 1]' t' t, t') + 6(1]t -1]'t)6(t - t'). 

(10.11) 

In terms of the biorthogonal eigenfunctions, we can 
write down the solution 

g{1]t, 1]'t, t - t') 

(10.12) 

Hence, the Green's operator has the form 
.. 

C;(1]t,t-t')= L; exp[-wtYt(t-t')] 
'tol 

X 1f!,/1]t) fa d1]' t 'ifi rt (1]' t)· (10.13) 

By using this operator, the covariance under (10.1) 
becomes 

Ut(t- e, e)=qtexp[-wt(t- e)], 

and the averaged Green's function reduces to 

Gt(t - e, e) = exp[ - wt(t - e)]. 

(10.14) 

(10.15) 

As anticipated, (10.14) and (10.15) satisfy the fluctua
tion-dissipation relation. The phase-correlation func
tion has the form exp[ - wt ( t - e»), thereby representing 
the solution of a Fokker-Planck equation. 

Let us now introduce (10.14) and (10.15) into (7. 17) 
and (7.18). First, carry out the e integration in (7.17) 
and let t- oo• By noting alt ... /at-O as t- oo , the modal 
energy relation in isotropic form becomes 

x (a(k, p, q)q(P)q(k - p) - b(k,P, q)q(k)q(k - P»). 
w(k) + w(p) + w(k - p) 

(10. 16) 

Following Sec. 7C, we have extended the isotropic re
quirements to qt, .. = q(k)/2 and wt , .. = w(k). Secondly, 
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we perform the e integration in (7.18), and then inte
grate the resulting equation in T over [0,00]. The dy
namic friction in isotropic form then becomes 

w(k) = IIk2 + 1Tk f f dpdqpq b(k,p,q)q(k-P). (10.17) 
.1 w(p) + w(k - p) 

The pair (10.16) and (10.17) describes the relationship 
among the triad modal energies in the stationary limit 
of (7.17) and (7.18). They agree in form with Herring's 
stationary SCFA4 in that (10.16) has the relaxation 
factor [w(k)+w(p)+w(k-p)]-l, whereas (10.17) has a 
slightly different one, [w(p) + w(k - p)]-l. Although 
EdwardsB also derives a pair relation similar to (10. 16) 
and (10.17), his dynamic friction has the relaxation 
factor [w(k) + w(P) + w(k _ p)]-l. 

11. CONCLUSIONS BY WAY OF A UNIFYING 
OBSERVATION 

The turbulence theories of Balescu-Senatorski6 and 
HerringS parallel the perturbation schemes of Wyld3 

and Kraichnan1 developed in the moment formulation. In 
summary, the theories of Balescu-Senatorski and Wyld 
involve the laminar perturbation and renormalization. 
On the other hand, both Herring and Kraichnan develop 
perturbation about a reference flow state which is very 
close to the actual turbulent field, thereby avoiding the 
tedious renormalization. Two other theories of 
EdwardsB and Phythian, 16 however, represent perturba
tion about the Gaussian random process, Edwards' 
theory belongs to the distribution function formalism, 
and Phythian's theory is based on the moment formula
tion. In Table II, the three turbulence theories in each 
formulation category are classified according to the 
underlying perturbation schemes . 

The reference flow state of Phythian's theory is de
scribed by the Langevin equation (see, for instance, 
Ref. 21). Phythian was able to determine the dynamic 
friction and diffusion coefficient (the variance of ex
ternal random forces) in terms of the triad interactions, 
thereby recovering the stationary DIA equations in fre
quency domain. In Edwards' theory, the reference flow 
state is governed by the Fokker-Planck equation (see, 
for instance, Ref. 22). Edwards derives one condition 
relating both the dynamic friction and diffusion coef
ficient with the triad interactions. He then splits this 
condition into two parts: one for the dynamic friction and 
the other for the diffusion coefficient. With this much 
latitude allowed, Edwards' theory cannot give the totally 

TABLE II. Classification of turbulent theories. 

Formulation Moment 

Perturbation 

About the laminar Wyld (1961) 
flow 

About a turbulent Kraichnan (1958) 
flow 

About the Gaussian Phythian (1969) 
random process 

Distribution 
function 

Balescu
Senatorski (1970) 

Herring (1965-66) 

Edwards (1964) 
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correct stationary dynamics in that the relaxation fac
tor of (10.17) becomes erroneously replaced by 
[w(k) + w(P) + w(k - p)]-l. Here the trouble is the one
time nature of the distribution function formalism, 
which impedes the simultaneous determination of the 
dynamic friction and diffusion coefficient. Since the 
random process is not Gaussian in action-angle 
variables, the present statistical mechanical formula
tion cannot be used to investigate Edwards' theory. We 
must therefore go back to the triad-interaction rep
resentation (2.6) and start anew the theoretical formu
lation but without having access to the elegant transition 
matrix. We shall briefly sketch Edwards' theory in 
Appendix B, and show the predicament in determining 
the dynamic friction and diffusion coefficient 
simultaneously. 
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APPENDIX A: THE PRODUCT HYPOTHESIS 

Under the cycle approximation, the kinetic equation 
(6.4) becomes 

a/{O}(1]. t) ) rf at =Lof{o}(1/,t +2Jo d8 

xt~"~ .. ef(.)(""). (AI) 

Consider the inviscid case. The first term drops out of 
(Al) and the laminar exp([ ~." t) denoted by the double 
line degenerates to the unit operator. Hence, the 
inviscid kinetic equation becomes 

Let us solve this by iteration: 

flO) (T/, t) = /{O)(T/, 0) + (f /2!) 

/[0) (1/, 6). (A2) 

x2t:0 E ~ f[O}(1/,0)+(i4/4!) 
I::P"'A.P~ 

X4t···B<Ce 
Xf[o,(T/, 0) + ..•. (A3) 

Suppose that the product hypothesis is initially imposed, 
flO} (T/, 0) = TIt." <p(T/t." , 0). Upon applying f (t ... ) drj to (A3), 
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we find that<P(TJt./<, 0) separates out from the fadors 10 
and [I::-P' Thus, in the cycle approximation the single 
mode distribution<p{1/I::.", t) will not induce statistical 
interaction with otherq,'s, if they are statistically in
dependent at the initial time. 

APPENDIX B: EDWARDS' GENERALIZED· 
RANDOM-PHASE APPROXIMATION 

We shall briefly retrace the essential steps of 
Edwards' turbulence theory, thereby indicating the dif
ficulty in simultaneously determining the dynamic fric
tion and diffUSion coefficient. Consider an abstraction 
of the triad-interaction representation 

dx/dt+ vl?-x"=:0 ii>kJ>.Xpx. + r", 
p •• 

(Bt) 

where x" denotes a suitable enumeration of v"(k) and 
w"(k), and r" is the random force for mode k. The sym
metrized coupling coefficient ii>kJ>. is symmetric in p and 
q, and CiikPq + Ciipq" + Cii."p=O assures the energy con
servation. Now take arbitrary nonrandom function 
R,,(x, t) and random function Sk(t). After adding R"x" + s" 
to both sides of (Bl), we put the resulting equation in 
the form23 

dx"/dt=-w,,x,,+h,,+>..:0 ¢"pq x px.+>..2(R"x,,-Sk)' (B2) 
p •• 

where 

w,,= vk2 +R", (B3) 

h,,=r,,+s/t' (B4) 

We have introduced the ordering parameter A into (B2) 
[see Eq. (8. 1)]. 

The reference flow state (>.. = 0) is the Langevin 
equation 

dx,,/dt= - w"x/l + hk • (B5) 

'Since the stochastic solution of (B5) is completely 
known under the Gaussian h", the objective is to deter
mine w" and the variance of h" in such a way that (B5) 
can best approximate (Bl) in a statistical sense. This is 
Phythian's self-consistent perturbation theory based on 
the moment formulation, which yields exactly the 
stationary DIA equations in frequency domain. 

Under the Gaussian hI< the distribution function F(x) 
satisfies the Fokker-Planck equation 

~~ -~ a!,. (w"x" + d" a!" )F= 0, (B6) 

where d" is the diffusion coefficient (2d" is the variance 
of hk ). On the other hand, the Liouville equation for the 
phase space points which evolve according to (B5) is 

(B7) 

Comparing (B6) and (B7), we can infer the correspon
dence between the forCing and equivalent diffusion terms: 

(B8) 

Edwards' theory begins with the Liouville equation for 
the phase space points evolving according to (B2): 
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_X2 (RkXk+Sk a!J} F=O. (B9) 

In the above we have invoked another correspondence in 
analogy to (BB): 

a a a 
-s F-- -S -F (BlO) 
ax" " ax,," ax" ' 

where 2Sk is the variance of s". Since r" and s" are 
statistically independent, we find from (B4) that 

dk=ek+Sk, (Bll) 

where 2ek is the variance of r". 
For the steady-state aF/at=O, we look for a series 

solution8 •24 

F = ~ + AFl + A 2 ~ + ..•. (B12) 

The zeroth-order ~ has the solution 

.fi"l(x) = IT !(xk) = IT (21Tqk)-1/2 exp(- xN2qk)' (B13) 

" " 
Here the modal energy qk= ,[ dxkx,,2 !(xk) is related to 
the ratio 

q"=d,,/w,,. (B14) 

The first-order Fl becomes 

Fl(X)= 6 IP"".qi/ x"x,x.n;i.. Ji'l(x), 
k,P.q 

(B15) 

where n"p.= w" + wp + w.' The solution of F2 is compli
cated because of the proliferation of product terms when 
a/ax"IP"".x,x. operates twice on FO. Considering only the 
terms multiplied by (l/4w,,)H2(x,,/,f2q,,), where H2 is the 
Hermite polynomial of order 2, we have 

rex) = 6 (R" - S"qi/ + 2 6 (IP"p.)2 n;i..qi/ qp q. 
" P •• 

+ 4 6 IP"P. IPp."n;~.q.) (1/4w k ) 
P,. 

XH2(x,,/,f2(J,,) FO(x) +"', (B16) 

where the three dots represent terms involving the co
efficients different from (l/4w k )H2(x"/.f2q,.). 

Since we shall require the zeroth-order problem to 
share the same modal energy with the actual turbulent 
flow, it is necessary that 

AJ dxxiFl(X)+A2 J dxx~~(x)=O. (B17) 

The first integral is zero due to the antisymmetry. We 
must therefore demand that 

R" - S"qi/ + 2 6 (<t>""q)2 n-";qqi/ qp q. P,. 

+ 4 6 IP"". Ciip." nk~ q.= o. (BIB) 
P,. 

Note that (BIB) is not sufficient for (B17) because the 
additional terms denoted by the three dots in (B16) do 
not aU drop out (in contrast to Edwards' claim). At any 
rate, let us accept (BIB) as the unique condition. This 
is the first ambiguity of Edwards' theory. By physical 
arguments, Edwards breaks up (BIB) into two relations: 

(B19) 
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(B20) 

This is the second ambiguity, The dynamic friction (B3) 
then becomes 

(B21) 

In view of (Bll) and (B14), the modal energy relation 
becomes 

IIk2q" = ell + 2 6 (IPkPq)2 qpq .I(w" + Wp + w.) 
P,. 

(B22) 

Compare these with (10. 16) and (10. 17). The modal 
energy relation (B22) agrees in form with (10.16); how
ever, the dynamic friction (B21) has a relaxation factor 
("1, + wp + Wq)-l apparently different from (10.17). The 
simultaneous determination of R" and S" is not possible 
because of the one-time nature of the distribution func
tion formalism. We have indicated how the two-time 
formulation can rectify Edwards' theory, thereby 
yielding the correct relaxation factors for both the 
dynamic friction and diffusion coefficient. Since our 
argument is heuristic, we shall not present here the 
detail which may be found in the original manuscript. 
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For Hamiltonians periodic in time, we obtain under certain assumptions a condition which is 
necessary and sufficient for the existence of quasiperiodic pointwise solutions to the SchrOdinger 
equation. Orthonormality and completeness of these functions in L 2(R n) are investigated, and the 
time·displacement operator is considered as a sum of quasiperiodic terms. 

1. INTRODUCTION 

Despite its antiquity, the periodic, time-dependent 
Schrodinger equation 

a 
i

at
1/!=H(t)1/!, H(t+T)=H(t) (1.1) 

remains a largely unsolved problem in quantum me
chanics. It is also an important one, for it represents 
in particular the interaction of a system of quantum 
mechanical particles with classical monochromatic 
radiation. One question of interest is whether there are 
solutions to the equation which are quasiperiodic in 
form, that is, solutions which can be written as 

1/!(t) = f(t) exp( - i at), f(t + T) = f(t), (1. 2) 

where f(t) is periodic in time and a is a real constant. 
Such functions would correspond to stable physical be
havior and provide a counterpart to the stationary states 
of time-independent theory. 

In this work we shall begin a function-analytic investi
gation of quasiperiodic solutions to the Schrodinger 
equation by an approach based on a spectral operator 
acting in L2(Rnx[o, T]). Under certain assumptions we 
obtain a criterion which is both necessary and sufficient 
for the existence of quasiperiodic solutions in L2(Rn). In 
addition, we investigate orthonormality and complete
ness of these solutions as well as the expression of the 
time-displacement operator as a sum of quaSiperiodic 
terms. 

Strong motivation for the existence of quasiperiodic 
solutions is provided by Floquet's theorem1 which states 
that, for an n-dimensional homogeneous system of 
ordinary linear differential equations 

i:tx=Y(t)X, Y(t+T)=Y(t), (1. 3) 

the solution may be written as 

x= P(t) exp(iJt)c, P(t + T) = P(t), (1. 4) 

where p(t) is a periodic matrix, c is an arbitrary con
stant vector, and J is a constant matrix in Jordan form. 
When Y(t) is Hermitian, J is diagonal and real, and the 
components of (1. 4) are given by 

x J =t Pik(t) exp(iJkt)ck' 
k=l 

(1. 5) 

We may draw an analogy between the Schrodinger equa
tion and the Floquet system by, for example, expanding 
the wavefunction in a coordinate basis set and noting 
that the time-dependent coefficients form a system of 

type (1. 3) with Hermitian Y(t). The only difference is 
that the dimension is now infinite, and for this reason 
we cannot always expect quasiperiodic solutions in the 
Hilbert space of interest. For example, in the simple 
case of a free particle Hamiltonian there are no quasi
periodic solutions of (1. 1) in L 2(R 3). This points out the 
need for a condition which is necessary as well as 
sufficient. 

Several other authors2-6 have noted the relevance of 
quasiperiodic solutions to the SchrOdinger equation and 
have developed perturbation schemes for obtaining them. 
Although the convergence of these series and, indeed, 
the existence of such solutions is in question, Young 
et al. 2 have pointed out that they may have asymptotic 
validity with respect to a perturbation parameter. 

The spectral operator upon which we base our ap
proach is introduced in the following section for Hamil
tonians with regular coefficients and for those with 
many-body Coulombic singularities. The next three 
sections are largely preparatory to the existence the
orems in Sec. 6, although the orthonormality and com
pleteness theorems in Sec. 4 are of additional interest. 
In Sec. 7 the time-displacement operator is conSidered 
first as a sum of quasiperiodic terms and then in a more 
compact form. 

2. THE SCHRODINGER OPERATOR 

Assume for a moment that there exists a quasi
periodic function 

l/J(t) = exp( - ixt) W), W + T) = ~(t) (2.1) 

which satisfies the Schrodinger equation (1. 1) in a 
pointwise sense. Then the periodic function ~(t) satisfies 
the equation 

A(t) ~(t) '" (H(t) - i ;t ) ~(t) = X~(t), (2. 2) 

so ~(t) is an eigenfunction of A(t) with real eigenvalue. 
It is well known that if a linear operator in a separable 
Hilbert space is self-adjoint, then a complete set of 
eigenfunctions and eigenpackets of the operator exists 
in the space. 7 This suggests, then, that we attempt to 
make A(t) into a self-adjoint operator, the existence of 
whose eigenfunctions will imply the existence of quasi
periodic solutions. 

First we choose a suitable Hilbert space. Quantum 
mechanically we shall ultimately be interested in solu
tions in L2(R~, so this must be a subspace. Periodicity 
in the t variable suggests we choose L2(Rnx[o, T]). 8 
Norms and scalar products with subscripts x, t, and xt 
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refer respectively to L 2(R,,), L2(O, T), and L 2(R"x[o, Tn. 
Norms and scalar products without a subscript refer to 
L2(Rn). 

Now we define the SchrOdinger operators more pre
cisely. Reasons for various qualifications are given 
subsequently. The operator Al in D(A1) below is charac
terized by regular coefficients. 

Al = L.J -::;- aJ,,(x, t)-::;- H6 bj(x, t)-::;- + -::;- bJ(x, t) _~ a a .n( a a ) 
1,10=1 ux} uX" /=1 uXJ uXJ 

+q(X, t) - i :t ' (2.3) 

where 

(a) aJ",b"q real, al " = a"J; 

(13) aJ", bJE C1;o(Rnx(O, T]), qE CO[Rnx[O, TJ); 

(y) aJ",bs,q satisfy g(x, T)==g(X, 0). 

cl;m(Rnx[o, T]) is the set of all functions on Rnx[O, 'T] 
with continuous coordinate derivatives of lth order and 
a continuous time derivative of mth order. When l is 
equal to m, a single superscript is used. A subscript of 
zero denotes compact support in RnX[O, T]. If 

11 =={uluECO'(Rn x(O, 'T]), u(x, T)=U(X,O)} (2.4) 

and 

(2.5) 

then D", is defined to be any linear subspace of L2(Rn 
x[O, 'T]) such that 

(a) l 1 r;,D",r;,12 , (2.6) 

(/3) if U ED"" then, for all integers n, U exp[211int/ 'T] 

ED",. 

Clearly, 11> 12 themselves satisfy (2.6j3). DIl is defined 
by the expression 

D/l={u Iu E C2;1(Rn X[0, 'T]), u(x, 'T) =u(x, 0), 

(2.7) 

The domain D(Ai ) is then taken to be either DOl. or D/l' 

The operator A2 in D(A2) below allows for the pres
ence of many-body Coulombic potentials. We consider 
m particles and denote the coordinate vector of the kth 
particle by r". Let {a1}, where j = 1, ... ,m and k 
== 1, ... , l, be a set of real numbers such that for fixed 
k the numbers {an are not all zero. Let {bk

}, where 
k = 1, ... ,l, be a set of real three-dimensional vectors 
and {cJ, where k= 1, ... ,l, be a set of real numbers. 
Define 

(2.8) 

and 

VC=~kc'/IR,.1. (2.9) 

The operator A2 is defined by 

A2 =At + Vc' (2.10) 

where At is given by (2.3) with n = 3m and Vc is given by 
(2.9). The domain D(A2) is taken to be D"" which is 
given by (2. 6) with n'" 3m. For future reference we de-
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fine R;m to be the set of pOints in R3m at which none of 
the vectors Rk is zero. The complement of this set is 
denoted by (R!m),. 

The precise nature of any singular coefficients in the 
Schrodinger operator will not be relevant to all points of 
investigation below. In such instances the subscript is 
omitted, and the operator A refers to Al in D(A1) with 
the regularity hypotheses (2. 3F3) weakened in some 
manner here unspecified. 

The operators At, A2 are formally self-adjoint. The 
domains D(A1), D(A2) , as they include 11> are dense in 
L 2 (Rn x [0, 'T]). 9 The boundary condition u (x, T) '" U (x, 0) is 
a stepping stone to periodicity, and, further, a condi
tion of this sort is needed to insure symmetry. Alterna
tively we could require 

u(X, T) = exp(ia)u(x, 0), (2. 11) 

where a is any real number. However, any choice of 
Q *' ° will translate the eigenfunctions and eigenvalues in 
such a way that the final wavefunctions are independent 
of a. It is convenient to include 11 in D(A) , as the mem
bers of /1 are often used to establish regularity of eigen
functions. The requirement (2.6F3) is necessary to the 
development in Sec. 4. The requirement (2. 6a) facili
tates necessity proofs in Sec. 6. 

Note that, by a change of scale 

t' = t/ T, 

we may.equivalently consider the operator 

A'(t')=A(t'T)=H(t'T)-.i:. 2-
'T at' 

(2. 12) 

(2.13) 

in the space L 2(R"x[0, 1]). Therefore, the choice of 
space need not depend on the parameter 'T, provided T 

is neither zero nor infinity. 

3. ESSENTIAL SELf-ADJOINTNESS OF THE 
SCHRODINGER OPERATOR 

Although we shall not establish essential self-ad
jointness of the Schrodinger operator in any generality, 
we shall demonstrate this property for the special case 
in which the time-dependent potential associated with 
the operator A2 is bounded. If the Coulombic term Vc is 
given by (2.9), we define 

A20 = ~ a//i-!-- bj(x)\ (i-cO - bk(X~+ Vc + Vi (x) 
/,Io=i \' uXj ~ xI< 'l 

+ V2(x, t) - i :t (3. 1) 

under the conditions 

(a) the numbers aJk form a real, positive definite, 
symmetric, constant matrix; 

(m {bk(x)}E ci(RSm) are real and independent of t; 

(y) Vt E CO(R3m) is real and independent of t; there 
exist M and 0.;; /3.;; 2 such that I V11 ';;Mlxl/l; 

(0) V2 E CO(RSmx(O, Tl) is real and bounded; "f2(T) 
== V2(0), 

and take D(A2o) = 11, 

Theorem 3.1: The SchrOdinger operator A 20 in 11 is 
essentially self-adjoint. 
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Proof: The essential self-adjointness of A 20 - V2 
+i a/at in C~(R3m) is a special case of a theorem due to 
Ikebe and Kato. 10,11 It is well known that the operator 
- i a/at is essentially self-adjoint in the subspace 

Dt={w(t) iWE c"'[o, 7]; W(7) =w(O)} 

of L2[0, 7]. Essential self-adjointness of A 20 - V2 in 

Dxt={U(X, t) Iu= Mt CjkVJWk; VjE CO'(R3m); 
j, k=1 

Wk EDt; all finite integers M, N} 
therefore follows from a theorem of Reed and Simon12 

and the natural isomorphism between L 2(R 3m X[O, 7]) and 
the tensor prod~ct space L2(R3m) CiS! L2[O, 7].13 

It is evident that Dxt C It. so A 20 - V2 in 11 is an exten
sion of A 20 - V2 in D xt . As the closure of an essentially 
self-adjoint operator contains every symmetric exten
sion of the operator, 14 A 20 - V2 in 11 is essentially self
adjoint if it is symmetric. It follows from the Gauss 
integral theorem15 that A 20 - V2 in 11 is symmetric. 
Finally, as an essentially self-adjoint operator retains 
this property when a real and bounded function is add
ed, 16 the theorem is proved. 

4. ORTHONORMALITY AND COMPLETENESS 
OF EIGENFUNCTIONS IN L 2 (Rn) 

The Schrodinger operator is here assumed to be 
essentially self-adjoint. Its closure A is then self
adjoi,gt, and we shall work within the closure. Recall 
that A has an orthonormal system of eigenfunctions if it 
has discrete spectrum, and this system is complete in 
L2(Rn x [0, 7]) if and only if its spectrum is purely dis
crete. We investigate similar eigenfunction properties 
in L2(Rn). Further characterization is needed, as stated 
in the following lemma. Define 

w == 21T/ 7. (4.1) 

Lemma 4. 1: If rp is an eigenfunction of A with eigen
value A, then, for any integer n, exp(inwt)rp is an eigen
function of A with eigenvalue X+nw. The orthonormal 
eigenfunctions of A may be partitioned into diSjoint sets 
Sl = {exp(inwt)lf1}, S2 = {exp(inwt)lf2}, ••.. 

Proof: Let {uJ be a Cauchy sequence in the domain of 
A which converges to rp. Then, for each n, 
{exp(inwt)uJ is a Cauchy sequence in D(A) which con
verges to exp(inwt)rp. We have 

A exp(inwt)rp = limA exp(inwt)uk = lim exp(inwt)(A +nw)uk k" oo k"oo 

= (A +nw) exp(inwt)rp, 

which establishes the first assertion. 

(4.2) 

Choose a normalized eigenfunction 1f1 of A. The eigen
functions exp(inwt)lf1 all belong to different eigenvalues 
of A, so the members of S1 are orthonormal. Choose 
another normalized eigenfunction % which is orthogonal 
to all members of S1' From the relation 

(exp(ikwt)lfj, exp(ijwt) If 2 }xt= (exp[i(k - j)Wt]¢l, 1f2)xt = ° 
(4.3) 

we see the members of Sl, S2 are all mutually orthogon
al, and thus to sets S1, S2 are mutually disjoint. Con-
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tinuing in this way we obtain the desired partitio,g. 
Notice that degeneracy in the point spectrum of A causes 
no difficulty. However, in the degenerate case the eigen
functions of A are not determined uniquely, so the parti
tion is not unique. 

Now choose one, and only one, member of each set 
SJ' multiply by 1/./ 7, and denote this new collection by 

J=={~~ ~.~ 

Due to different choices of n in the sets Sj} and, J;f 
applicable, degeneracy in the point spectrum of A, the 
set J is not unique. We consider any particular choice 
to have been made. 

Theorem 4.1: For almost every fixed t on [0, 7] the 
members of J form an orthonormal system in L 2(R"). 

PrOOf: The orthogonality relation between elements of 
any particular set SJ is 

(exp(ikwt) Ifl' exp(ilwt) Ifj )"t = 6kh 

which may be written as 

(4.5) 

(4.6) 

II bill; is a function of t, and the quantities on the left of 
(4.6) are its Fourier coefficients. Therefore II bjll; may 
be written as 

II bl II; = 1 + Y (t) 

almost everywhere in t. The function y(t) is defined 
by (4.7) and the requirement 

(4.7) 

(4.8) 

for every u E L2[O, 7]. We show y(t) is zero almost 
everywhere. As bjEL2(Rnx[0, 7]), IIbjll;, and therefore 
y(t), is measurable. We define a function QI(t) by 

_{1, y(t) = ° 
QI(t) '" y(t)/ Iy(t) I, y(t) '* ° . (4.9) 

As y(t) is measurable, QI(t) is also measurable. 17 Mea
surability of Ql2(t), together with the fact that QI(t) has 
unit magnitude, implies QI E L2[0, 7]. Therefore, from 
(4. 8) we find that 

0= (QI,Y)t=fo
T 

Iy(t)i dt, (4.10) 

so y(t) is zero almost everywhere. 

The orthogonality relation between elements of any 
two different sets Sj' Sj' may be written as 

fo l' exp(- inwt)(bj, bk)"dt = 0. (4. 11) 

In similar fashion, (bj, bk)" is shown to be zero almost 
everywhere in f, and the theorem is proved. 

Theorem 4.2: The system J={bj} is comple~ in L2(Rn) 
for almost all t if and only if the spectrum of A is purely 
discrete. 

Proof: Purely discrete spectrum is equivalent to com
pleteness of the eigenfunction system {exp(inwt)bj} in 
L2(R" x [0, 7]). If {exp(inwf)bj} is complete in L2(R" 
x[O, 7]), completeness of {bJ} in L2(Rn) for almost all t 
follows from this and the fact that L2(Rn) is a subspace 
of L 2(Rnx[0, 7]). Next assume {bl} is complete in L2(Rn) 
for almost all t. If {xJ(x)} is a complete orthonormal 
system in L 2(R"), then it follows that 
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X,(x) = !:k(l:k, xAl:k (4.12) 

almost everywhere in x for almost all t. Also, the 
functions 

exp(inwt>x, = exp(inwt)~kU:k' X')xl:k (4. 13) 

are complete inL2(Rnx[0, r]). Consider 1/JEL2(Rnx[0, r]) 
orthogonal to the set {exp(inwt)I:J. We have 

J dt exp(inwt)(1/J, I:k)x = 0. (4.14) 

Completeness of {exp{inwt)} in L2[0, r] implies (1/J, I:k)x is 
zero almost everywhere in t. Consequently, the sum 

(4.15) 

is zero almost everywhere in t and thus we find that 

J dtS",j (t) = J dt exp(inwt)~k J 1/J* (1:k> X)xl:k dx = 0. 

(4.16) 

Now, that </IEL2(R"x[0,r]) implies that </I E L2(Rn) for 
almost all t. Further, by assumption, the sequence of 
partial sums corresponding to (4.12) converges to X, in 
L2(Rn) for almost all t. Therefore, by continuity of the 
scalar product in L 2 (R n ), we may interchange the order 
of summation and integration over x in (4.16) for al
most all t. Considering the time integral in (4.16), we 
may do so for all t. Therefore it follows that 

(4.17) 

Completeness of {exp(inwt)x,} implies </I is the zero 
element, which in turn implies {exp(inwt)I:,} is complete 
inL2(R"x[0,rJ). 

It is evident that a further property is needed to 
establish orthonormality in L2(R") for all t. As we shall 
later be interested in eigenfunctions, if any, which are 
pointwise continuous, we see what can be said with this 
hypotheSiS. The following lemma shows it is sufficient 
to guarantee boundedness of the L2(Rn) norm. 

Lemma 4.2: Assume that, for every t E [0, r], the 
members of il:j} are continuous in t at every x E R". 
Then, for every t E [0, r], I:j is an element of L 2 (R") and 
the inequality 1 (1:" Sk)X 1 "" 1 is satisfied. 

Proof: Let M, be the set of values of t for which 
111:, Ilx f-1. As M, is of measure zero and 1:, is continuous 
in t, for each t E [0, r] we can find a sequence u~ 
= 1 s,(x, tn) 12 such that u~ - 11:,(x, t) 12 for every x ERn, 
and tn ¢ M j • Every member of this sequence is positive 
and measurable, so by Fatou's lemma, 18 

J n lim inf u~ dx "" lim inf J n ~ dx, 
R n .. co n"co R 

(4.18) 

we have 

(4.19) 

Therefore S, and I Sj I are elements of L2(Rn) and we 
may use the Schwartz inequality in L2(Rn) to conclude 
that 

I (S,' I:k)xl "" JRn Il:j II Sk I dx"" II s, II xlll:k II x"" 1. (4.20) 

Therefore the lemma is proved. 

It is well known that, alone, pointwise continuity of 
1 S, 12 is insufficient to guarantee continuity of IIs,ll~ in t. 
However, we have also the constancy of Ill:jll~ for almost 
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all t and the derivative results of Lemma 4.2. Un
fortunately, this additional information remains insuffi
cient to establish orthonormality, as shown by the fol
lowing counterexample. 19 The functions 

</In(x, t) = 1T1I42n~(nl)1/2 Hn(xt2) exp(- t4x
2
/2) , 

where H n(xt2) are the Hermite polynomials 

dn 
Hn(z) = (_l)n exp(z2) dznexp(- z2), 

(4.21) 

(4.22) 

are infinitely differentiable. They form an orthonormal 
system in L2(R1) when t is unequal to zero, but their 
norms are zero at the latter point. 

The need for a further property to establish orthonor
mality in L 2(R"), which stems directly from use of the 
space L 2(Rn x[0, r]), is a weak point in this formulation. 
It is unlikely that, without a complete reformulation of 
the problem, a criterion can be proposed which is better 
than the old standard of uniform convergence. 

Theorem 4. 3: Assume that, for every j, I:J is an ele
ment of CO(RnX[O, r]) and the integrallll:jlli converges 
uniformly in t on [0, r]. Then {I:j } is an orthonormal 
system in L2(Rn) for every ton [0, r]. Also, the mem
bers of {I:j } are strongly continuous functions of t with 
respect to the L2(Rn) norm. That is, given E> 0, there 
exists 1'!J such that 

It- t' 1< 1'!J='> III:J(t) -I:,(t') II .. <E. 

Proof: It is well known20 that these conditions are suf
ficient to insure continuity of II I:J(t) II; on [0, r]. As [0, r] 
is compact, the resultant uniform continuity, together 
with the implication of Theorem 4.1 that II I:,(t) II x is unity 
on a dense subset, implies III:J(t)lI .. is unity everywhere 
on [0, r]. 

Proof is similar for the scalar product, except we 
must show the integral (1:" I:k)x converges uniformly on 
[0, r]. Consider the one-dimensional case. By Lemma 
4.2, I:/(t) is an element of L2(R1) for every t. If N is a 
positive real number, this implies I:j(t) E L2(N, 00) for 
every t. Therefore, we may use the Schwartz inequality 
in L2(N, 00) to show that 

If; I:Hkdxl "" (j; II:, 1

2dx)112(j; Il:kI2dx)1/2. (4.23) 

A similar estimate holds for the interval (- 00, - N). 
These estimates, together with uniform convergence of 
111:,11; and IIl:klli, imply uniform convergence of (I:J, I:k) ... 
Generalization to higher dimensions is obvious. The 
statement of strong continuity follows from similar 
considerations. 

Just as pOintwise continuity of the members of {I:j }, 

combined with Theorem 4. 1, is insufficient to guarantee 
orthonormality, it is evident that the strong continuity 
of Theorem 4.3, combined with Theorem 4.2, does not 
imply completeness. We do not expect that there is any 
additional internal criterion implying the latter prop
erty which is not essentially equivalent to the statement 
of completeness itself. 

5. THE BOUNDARY CONDITION 

As the boundary, that is the set of pOints (x, t) E [Rn 

XO], (x, t) E [Rnx r], is a set of measure zero, it is clear 
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that additional properties are required to show eigen
functions of A satisfy the boundary condition 

u(x, r) =u(x, 0). (5.1) 

As before, we shall be interested in continuous eigen
functions, and shall assume a degree of continuity con
sistent with the problem. Cases in which the Hamilton
ian is discontinuous must be treated according to the 
nature and distribution of the discontinuities present. 

Theorem 5.1: Assume Al is symmetric and its eigen
functions are members of C2;1(Rn X(O, r]). Then these 
eigenfunctions satisfy the boundary condition (5.1) at 
every xERn. 

Proof: Let XCI = (xi, ... ,x:) be an arbitrary point in 
Rn, and y> 0 be a fixed positive real number. Define 

V==(xi- y,xi+y]x", x(x:- y,x:+y]x[O, r] 

==Vnx(O,r]. (5.2) 

By hypothesis, 11 ~ D(Al)' Let u be an arbitrary element 
of 11 with compact support in V and bj be an eigenfunc
tion of A1• It is easy to see from the Gauss integral 
theorem15 that 

(5.3) 

where Hl =Al +i a/at. Symmetry of Al in D(A1) and (5.3) 
imply that 

0= (A1u, bj)xt - (u, A 1bj)xt = ifv :t (u* bj) dx dt. (5.4) 

Again using the theorem of Gauss, we find that 

(5.5) 

NOW, the members of 11 with compact support in V, 
evaluated at t=O, are dense in L2(V,,). The function 
(bj(X, r) - bj(X, 0)], being continuous on the compact set 
Vn, is a member of L 2(Vn). As, from (5. 5), this func
tion is orthogonal to a dense subset, it must be zero for 
almost all XE Vn• As (bj(X, r) - bj(X, 0)] is in fact uni
formly continuous on Vn, it must be zero for every 
x E Vn> and in particular for the point XCI. As XCI was 
arbitrary, the theorem is proved. 

Theorem 5.2: Assume A2 is symmetric and its eigen
functions are members of C2;1(R~mx[o, r]) and CO(R3m 

x[O, rJ). Then these eigenfunctions satisfy the boundary 
condition (5.1) at every XE R 3m. 

Proof: Let XCI be an arbitrary fixed point in R~m. Then 
we can find y> 0 and sets V, Vn such that Vn is disjoint 
from (R~m)'. Therefore the proof of Theorem 5. 1 ap
plies, and the boundary condition is satisfied except 
perhaps on (R;m),. 

Clearly R~m is dense in R 3m, so for arbitrary fixed 
X8 E (R~m)' we can find a sequence {xJc R~m such that 
xn - xB. As the function g(x) == (bJ(X, r) - bj(X, 0)], where 
bj(X, t) is an eigenfunction of A2, is continuous on R3m, 
for arbitrary e we can fine N(e) such that 

n> N(e) => Ig(xn) - g(x8) I < e. (5.6) 

As g(xn) is zero for every n, we conclude that the limit 
g(xB) is also zero, and the theorem is proved. 
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6. QUASIPERIODIC POINTWISE SOLUTIONS 

In this section we find a criterion which is necessary 
and sufficient for the existence of quasiperiodic solu
tions to the Schrodinger equation in L2(Rn). This cri
terion is dependent on two requirements. The first of 
these, essential self-adjointness of the Schrodinger 
operator, was established in Sec. 3 for a limited class 
of problems. The second requirement, regularity of the 
eigenfunctions of that operator, will not be investigated 
here. However, it is well to point out that the corre
sponding time-independent problem has received much 
attention, 21,22 and results of that work lead us to expect 
that the regularity hypotheses made here can be shown 
to be satisfied. We also note that a typical regularity 
proof neither establishes nor requires the existence of 
eigenfunctions to have been previously established. The 
requirement of eigenfunction regularity is not in fact 
needed for the necessity part of our theorem. 

By a pointwise solution to the Schrodinger equation 
A 11/!= 0 is meant a function which is a member of C2;1(Rn 

XR1) and satisfies the equation in the usual sense. For 
the equation A21/! = 0 we mean instead that this solution 
is a member of C2;1(R!m XR1) and CO(R3m XR1). 

One final comment is in order. It would be desirable 
in the following theorem to replace the statement that the 
L2(Rn) norm of the quasiperiodic function is bounded in 
time with the statement that it is constant in time. From 
Sec. 4 it is clear that this is impossible without addi
tional information. However, the theorem can be stated 
in this form if, for example, the hypotheses of Theorem 
4.3 are satisfied. 

Theorem 6.1: Assume the Schrodinger operator Al is 
essentially self-adjoint and the eigenfunctions of its 
closure, if any exist, are members of C2;1(Rn X(O, r]). 
Then, in order that the corresponding Schrodinger equa
tion have quasiperiodic pointwise solutions whose L 2 (Rn) 
norm is bounded in time, it is necessary and sufficient 
that the point spectrum of Al not be empty. 

Proof: Assume the point spectrum of Al is not empty, 
and let bj be an eigenfunction of Al with eigenvalue Aj • 

As bj E C2;1(RnX[O, r]), we conclude that the function 1/!j 
== bj exp(- iAjt) is a pointwise solution of the equation Al1/! 
::0 0 when t E [0, r]. Define an extension of 1/!j to the 
interval (r, 2 r] by 

and let t' = t - r. Then 1/!j satisfies 

Al (t)1/!j(t) =Al (t' + r) exp[ - iXj(t' + r) ]bj(t') 

= exp( - iAj r)Al (t') 1/!j(t') 

=0 

(6.1) 

(6.2) 

on that interval. By Theorem 5. 1 the function bj 
satisfies bJ( r) ::0 bj(O) on Rn, so 1/!j is continuous when t = r. 
Further, the relation 

(6.3) 
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shows that /fiJ has a continuous first time derivative 
when t = T. Therefore, if we define a function l/IJ on 
R"XR1 by 

l/IJ(t)=exp(-i>"Jt)bJ(t-nT), nT~t~ (n+1)T, (6.4) 

it follows that this quasiperiodic function is a member 
of e 2; 1 (R" XR1) and a pointwise solution of the Schro
dinger equation on its domain. By Lemma 4. 2 /fi is a 
member of L2(R") and its norm there, which is constant 
for almost all t, is bounded in time by that constant. 
Therefore, sufficiency of the condition is proved. 

Now assume l/I is a pointWise quasiperiodic solution of 
Al/fi = 0. Then we may write /fi = exp( - i>..t) b, where b is 
periodic in time and a member of e 2;1(R"XR1). If br 
denotes the restriction of b to R"x(O, T], then br 
satisfies 

(6.5) 

and 

(6.6) 

As II /filL. is assumed bounded in time it follows that br 
EL2(R"X[O, T]) and, from (6.5), A 1br EL2(R"X[O, T]). 

If br E D(A1), it follows from this and (6. 5) that br is 
an eigenfunction of A1, and hence the point spectrum of 
Al is not empty. If D(A1) =D8, it follows from above that 
brE D(A1), and thus brE D(A1). 

If D(A1) =D Ol , let D~ be the set of all finite linear com
binations of members of DOl with br• As br , A1brE L2(R" 
x[o, T]), the operator Al in D~ is an extension of Al in 
DOl' We show it is a symmetric extension. Evidently the 
equality (Abr, br)xt = (br,Abr)xt follows from (6.5). Now 
consider the quantity 

(6.7) 

for arbitrary fixed U E DOlO As both u, br satisfy the 
boundary condition (6. 6), it is easy to show by the Gauss 
integral theorem15 that Q is zero so Al in D~ is sym
metric. But, as Al in DOl is essentially self-adjoint, 
Al has no proper symmetric I;lxtensions14 and so br 

E D(A1). Therefore the theorem is proved. 

In the many-body Coulomb problem a smallness condi
tion on the first derivatives is needed to establish neces
sity, so we split the theorem into two parts. We say a 
function g Eel; ° (R!m X [0, T]) satisfies condition (0') if, for 
each compact subset Z of R 3m x[0, T], there exist num
bers Fk~ 0, where k= 1, ... ,l +1, and ° ~ (3 <2 such that 

(6.8) 

for all x, tE Zn (R!mx[o, T]). This is a reasonable con
dition in light of the form of the Coulombic singularity. 
Alternative smallness conditions would also allow our 
proof to succeed. 

Theorem 6. 2a: Assume the Schrodinger operator A2 
is essentially self-adjoint, the point spectrum of A2 is 
not empty, and the eigenfunctions of A2 are members of 
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e 2;1(R;mX[0, T]) and e O(R3m x[O, T]). Then the corre
sponding Schrodinger equation has quasiperiodic point
wise solutions' whose L2(R3m) norm is bounded in time. 

Proof: This is analogous to the sufficiency proof of 
Theorem 6. 1, except Theorem 5. 2 is used in place of 
Theorem 5. 1. 

Theorem 6. 2b: Assume the Schrodinger operator A2 
is essentially self-adjoint and the corresponding Schro
dinger equation has a quasiperiodic pointwise solution 
which satisfies condition (0') and whose L2(R3"2 norm is 
bounded in time. Then the point spectrum of A2 is not 
empty. 

Proof: The proof is analogous to the demonstration of 
necessity in Theorem 6.1 except we must show, for 
arbitrary U ED"" that the quantity 

Q:; (A2u, br)xt - (u, A2 br)d (6. 9) 

is zero when brE e 2;1(R!mx[0, T]), eO(R;mX[O, T]) and 
satisfies (6.5), (6.6), and condition (0'). Let e1m be a 
cube in R 3m with center at the origin and side of length 
M sufficiently large that the support of U is contained 
in the interior of the cube. Let Vk(e) be the set of points 
in e~.r for which I Ilk I < e. Then Q may be written as 

(6.10) 

where 

[
3m ] * Obr - .. 

X :E aJlI.u T"" drl" ·drmdt. 
k=l oXk 

(6. 15) 

That Q2 is O(e3) follows from (6.5). That Q3 is zero 
follows from (6. 6) and the theorem of Gauss. 

The term Ql is easily seen to satisfy the inequality 

(6.16) 

where B is a constant and 

{ 
1.. -

Qki= ~ drl" ·drm• 
vknc1m 1Ri l 

(6.17) 

By a coordinate transformation the term Qki can be 
shown to be O(e2). By means of the divergence theorem,15 
a coordinate transformation, and condition (0') in the 
case of Q5, the terms Q4 and Q 5 can be shown to be 
O(e2) and O(e2-8), respectively. Therefore Q is O(e2~). 
As Q is independent of e, which can be made arbitrarily 
small, the theorem is proved. 
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Under the hypotheses of Theorems 6. 1 and 6. 2a the 
members of the set J = {1:j}, multiplied respectively by 
exp(- iXi) and extended periodically in time, are 
quasiperiodic pointwise solutions of the Schrodinger 
equation. From Theorem 4. 1 these solutions form an 
orthonormal system in L2(R"} for almost all t, and this 
is true for all t if the hypotheses of Theorem 4. 3 are 
additionally satisfied. From Theorem 4. 2 these quasi
periodic solutions are complete in L2(RR) for almost all 
t if the spectrum of the SchrOdinger operator is purely 
discrete. 

7. THE TIME-DISPLACEMENT OPERATOR 

A linear operator on L2(RR) is a time-displacement 
operator for the SchrOdinger equation (1.1) if it is unit
ary, strongly continuous in t, satisfies the composition 
law 

T(t, t')T(t', to) = T(t, to) 

with 

T(to, to) = I, 

(7.1) 

(7.2) 

and satisfies the SchrOdinger equation in some sense 
when applied to a particular dense subset of L2(RR). In 
existence proofs for time-displacement operators as
sociated with evolution equations it is usually most suit
able to require a strong solution property. Our develop
ment is oriented instead toward a pOintwise solution 
property. In general, neither type of solution implies 
the other. 

In this section we investigate expression of the time
displacement operator as a sum of quasiperiodic terms. 
Clearly, this is only possible when the spectrum of the 
Schrodinger operator is purely discrete. However, in 
the case of mixed spectrum we obtain an isometric 
operator which is a partial solution. It is to be noted 
that our results are somewhat weakened by the fact that 
Theorems 4. 1 and especially 4.2 are true only almost 
everywhere in t. The final theorem in this section pro
vides further insight into the form of the time-displace
ment operator. 

We make the following assumptions, the first three of 
which are permanent (the subscript I may be taken to be 
either 1 or 2): 

(a) Al is essentially self-adjoint. 

(13) The point spectrum of Al is not empty. 

(y) The eigenfunctions of Al are members of (7.3) 
c2; 1 (RR X [0, rl) when I = 1 and are members of 
C2;1(R~mX[O, rl) and cO(R3mx[o, rl) when l=2. 

(6) The integrals lI1: j ll 2 converge uniformly in t. 

The set J = {1: j } is given by (4.4) and extended periodi
cally in t as specified in Sec. 6. The set of correspond
ing eigenvalues is denoted by {AJ}. First we see what can 
be said without the hypothesis (7.36). 

Theorem 7.1: Assume (7.3a-y), and let {aJ} be a set 
of complex numbers, independent of t, such that 
L 1 a j 12 is convergent. Then the function 

(7.4) 
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is an element of L2(RR) for every tE R1 and a pOintwise 
solution of the Schrodinger equation when the sum is 
finite. The series defined by l/!(t) converges in L2(Rn) 
uniformly in t and satisfies the inequality 

Proof: Consider the sequence of partial sums 
N 

(7.5) 

ifJN =~ aJ 1:j (t) exp(- iAi). (7.6) 
J=1 

Taking N> M, we have 

IIl/!N-l/!MI12 = JR" I !ft.1 a j 1:,(t) exp(- iAjt) I 2 
dx. (7.7) 

By Theorem 4. 1 the members of J form an orthonormal 
system in L2(RR) for almost all t. Let M be the set of 
values of t for which this is true. Then, as the function 
1: j (t) are continuous in t at every x E Rn, for every t 
we can find a sequence 

un -= I JE+l a,1:J(tJ exp( - iA,tR ) 12 (7.8) 

such that 

Un -I t a j 1:,(t) exp(- iXi) I 2 

'=M+l 
(7.9) 

pointwise, and tR E M. By the Fatou lemma 18 it follows 
that 

IIl/!N-l/!MI1 2
o:SliminfJR"uR dx. (7.10) 

Applying Theorem 4. 1 to the right side of (7.10) we find 
that 

(7. 11) 

As k.i.1 1 a j 12 is convergent and {a j } is independent of t, we 
conclude from (7.11) that the sequence of partial sums 
converges in L2(Rn) uniformly in t. That is, for arbi
trary E> 0 there exists N(E) independent of t such that 

(7. 12) 

To obtain the estimate (7. 5) we apply as above Theorem 
4.1 and Fatou's lemma to the quantity IIl/!NII2 to obtain the 
inequality 

(7. 13) 

and then take the limit on N. As {ifJN} converges to ifJ in 
L2(Rn) , we may interchange this limit process with the 
integration on the left of (7.13), and the desired result 
follows. That each partial sum (7. 6) is a pointwise 
solution of the Schrodinger equation follows directly 
from Theorems 6. 1 and 6. 2a, and the theorem is 
proved. 

Define a quantity for t, to E R1 on L 2 (Rn) by 

(7. 14) 

From Theorems 7.1 and 4.1 it is clear that T(t, to) is a 
map of L2(Rn) into itself if and only if ~;:1 1 (1: j (fo), ifJI2 
converges for every l/!. The hypotheses (7. 3u-y) appear 
to be insufficient to guarantee this convergence for 
every to. Therefore we cannot claim that (7. 14) is a 
well-defined operator on L2(RR) for every to. Recall 
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from Theorem 4.3 that, under the additional hypothesis 
(7.315), {i;j(to)} is an orthonormal system in L2(Rn) for 
every to, which implies (7.14) is well defined on L2(Rn). 
In this circumstance we shall also consider the operator 
(7.14) on the subspaces 

Do(to) ={u lu =~ bj i;J (to) , N finite} (7.15) 

and 

(7.16) 

of L2(Rn). Here {b j } is a set of arbitrary complex con
stants. The closure Do(to) of Do(to) is the span of the 
orthonormal system {i;J(to)}. 

Theorem 7. 2a: Assume (7.30!-15). Then the linear 
operator (7.14) on L2(Rn) into itself is strongly continu
ous in t and has the properties (7.1) and 

(T(t, to)u, T(t, to)v) = (T(to, to)u, T(to, to)v) (7. 17) 

for every t, t', to E R1. T(t, to)u is a pointwise solution of 
the associated Schrodinger equation for every u E Do(to). 

Proof: The properties (7. 1), (7. 17) are easy conse
quences of Theorems 4. 3 and 7. 1, and continuity of the 
scalar product in L2(Rn). The pointwise solution prop
erty was shown in Theorem 7. 1. Now consider the 
strong continuity, and let 1/! be an arbitrary element of 
L2(Rn). We have 

/I T(t, fo)1/! - T(t', to)1/! II 

~ lit (i;j(f) exp(- iAJf) - i;j(f') exp(- iA,t') exp(iAio) 
'=1 

x (i;,(to), 1/!) IH13(.1 i;,(t) exp[ - iAj(f - to) ](i;j(to), 1/!)11 

+ IIj~1 i;j(t') exp[- iA,(t' - fo)](i;j(to), 1/!)II. (7.18) 

By Theorem 7.1, T(f, fo)1/! converges in L2(Rn) uniformly 
in f, so, given e> 0, we can find N(e) independent of t, t' 
such that the second and third terms on the right of 
(7.18) are each less than e/3 when N> N(e). As N(E) is 
finite and independent of t, t', we can, using Theorem 
4.3, find l5(e) > 0 such that If - t' I < I5(E) implies the first 
term on the right of (7.18) is also less than e/3. There
fore, for arbitrary € > 0 we can find Ii(E) > 0 such that 

It-t'l <1i(E)~ I/T(t,to)1/!-T(t',to)1/!/1 <E, (7.19) 

and the theorem is proved. 

The following form of Theorem 7. 2a applies when 
T(t, to) is defined on D(to). 

Theorem 7. 2b: Assume (7. 30!-li). Then, in addition 
to the properties in Theorem 7. 2a, the operator (7.14) 
on D(to) onto D(t) is isometric and satisfies (7. 2). 

Proof: First we show the range of T(t, to) on D(to) is 
indeed D(t). To see this, let x =i:, (i;j(t) , x)i;J(t) be an 
arbitrary element of D(t). Then it is clear that the 
function 

1> = '6 (i;,(t) , X) exp[iA(t - to) ]i;/to) (7.20) , 
is an element of D(to) and satisfies T(t, to) 1> = X. The 
relation (7.2) follows immediately from the definition of 
D(to). For arbitrary u, v ED(to) (7.2) implies 
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(7.21) 

Relations (7.21), (7.16) imply the isometry, and the 
theorem is proved. 

The following theorem shows that, in the case of 
purely discrete spectrum, the operator (7. 14) has the 
requisite properties of the time-displacement operator 
almost everywhere in t, to. 

Theorem 7. 3: Assume (7. 30! -Ii). Further, assume 
the spectrum of AI is purely discrete. Then the opera
tor (7.14) is strongly continuous in t and satisfies (7.1). 
Also, for almost all t, to ERl, the operator (7.14) is a 
unitary map of L2(Rn) onto itself, has the property (7.2), 
and satisfies the Schrodinger equation pointwise when 
applied to the dense subset Do(to) of L2(Rn). 

Proof: From Theorem 4.2 the spaces D(t), D(to) are 
equal to L2(Rn) for almost all f, fo. Therefore, as an 
isometric map on a Hilbert space whose range is the 
same Hilbert space is unitary, and as T(f, to) is 
isometric from Theorem 7. 2b, we conclude that T(t, to) 
onL2(R~ is unitary for almost all t, to. As D(to) is equal 
to L2(Rn) for almost all to, Do(to) is dense in L2(Rn) for 
Theorem 4.2 and the definition of D(to). The other prop
erties have been established in Theorem 7. 2a. 

Theorem 7.4: Assume (7.30!-li). Then the operator 
(7.14) on D(to) onto D(t) may be written in the form 

T(t, to) = P(t, to) exp[ - iB(to)(f - to)]. (7.22) 

The operator B(to) in D(to) is self-adjoint for every to, 
periodic in that parameter, and independent of f. Its 
spectrum is independent of fo and is related to the point 
spectrum of AI by a(A I) = {A, + 21Tn/ 7}, where n runs 
through all integers and {Aj} is the set of eigenvalues of 
B(to). The operator P(t, to) is isometric, strongly con
tinuous in t, periodic in t, fo, and satisfies 

P(t, t')P(t', to) = P(t, to) 

with 

P(fo, to) = I. 

(7.23) 

(7.24) 

PrOOf: We define an operator B(to) in the Hilbert space 
D(to) by 

B(to)u =6 Aji;j(to)(i;,(to) , u) 
j=1 

(7.25) 

with domain 

D(B(to» = {u I u, B(to)u E D(to)}. 

As the members of {Aj} are real and, from Theorem 
4. 3, the system {i;j(to)} is orthonormal, it is clear that 
B(to) in D(to) is self-adjoint. By definition B(to) is 
periodic in to. Relation between the spectra of AI and 
B(to) is clear from definitions and Lemma 4. 1. By the 
operator exp[ - iB(to)(t - to)] we mean 

exp[ - iB(to)(t - to)]u = 6 exp[ - iAj(t - to) ]i;j(to)(i;j(to), u) 
J 

(7.26) 
or, equivalently, 

exp[- iB(to)(t- to)] = J exp[- iA(t- fo)] dEA(tO) , (7.27) 

where EA(tO) is the spectral family of B(to). Clearly, the 
operator (7.26) maps D(to) onto itself. We define P(t, to) 
on D(to) by 
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"" 
pet, to)u = ~ l;j(t)(l;j(to) , u). (7. 28) 

j=1 

As {l;j(t)}, {l;j(to)} are orthonormal, when u, v E D(to) the 
sequences of partial sums 

Pn(t, to)V = t bj (t)(l;j(to), v), (7.29) 
j=1 

(exp[ - iB(to)(t - to) ])mU = f; exp[ - i"-,,(t - to) ]l;,,(to)(l;,,(to), U) 
,,=1 

(7.30) 

converge in D(to) respectively to pet, to)v, exp[ - iB(to) 
x (t - to) Ju. Using these facts, along with continuity of 
the scalar product in D(to), we see that (7.22) is indeed 
satisfied. Relation (7.24), as well as periodicity, im
mediately follows from the definition of pet, to). The 
proofs in Theorems 7. 2a, b of strong continuity of 
T(t, to), the isometry of T(t, to), and relation (7. 1) are 
readily seen to be applicable to pet, to), and the theorem 
is proved. 

The corresponding statement of this theorem when the 
spectrum of A, is purely discrete is evident from the 
development above and Theorem 7.3. In particular, 
B(to) is self-adjoint in L2(Rn) for almost all to, and 
pet, to) is a unitary map of L2(Rn) onto itself for almost 
all t, to. 

8. DISCUSSION 

In this work we have found a criterion which is neces
sary and sufficient for the existence of quasiperiodic 
pointwise solutions in L2(Rn) to the periodic, time-depen
dent Schrodinger equation. This criterion rests on two 
hypotheses: essential self-adjointness of the Schrodinger 
operator defined in Sec. 2, and sufficient regularity of 
its eigenfunctions. The first hypothesis was shown to be 
satisfied for a limited class of problems. Although we 
consider it reasonable to expect that both hypotheses 
will be satisfied to a considerable degree of generality, 
this remains to be shown. 

A strong pOint of our criterion is that it is in a form 
well suited to application. That is, the question of the 
existence of quasiperiodic solutions to a particular 
Schrodinger equation is reduced to the qualitative spec
tral analysiS of an operator which can be written ex
plicitly. For purposes of qualitative spectral analysis 
it is desirable to remove the period parameter T from 
the underlying Hilbert space. This can be done as shown 
at the end of Sec. 2. 

Although well suited to the investigation of quasi
periodic solutions, our approach is less successful with 
respect to the time-displacement operator. However, 
under an additional hypothesis of uniform convergence, 
we have shown that, when the spectrum of the Schro-
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dinger operator is purely discrete, there exists an 
operator expressible as a sum of quaSiperiodic terms 
which has aU the requisite properties of the time-dis
placement operator almost everywhere in t. The form 
of the operator T(t, to) expressed in Theorem 7.4 is 
highly suggestive. It leads us to suspect that, regard
less of the nature of the spectrum of the Schrodinger 
operator, the time-displacement operator may be 
written as the product of a periodic unitary operator and 
the exponential of a self-adjoint operator dependent only 
on the initial time. We shall return to this question in a 
forthcoming publication. 
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One of the coordinate systems commonly used in the three-body problem consists of three 
center-of-mass coordinates, three interparticle separations, and three Euler angles specifying the 
orientation of the triangle whose vertices are the three particles. The usual specification of the Euler 
angles for this system, which aligns the axes of the body-fixed coordinate system with the principal 
axes of the moment of inertia tensor, results in a coordinate singularity whenever two of the 
moments of inertia are equal. An alternative specification of the Euler angles for the equal mass case 
which treats the three particles symmetrically and eliminates the coordinate singularity at the 
equilateral triangle configuration is presented. 

I. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

One of the coordinate systems commonly used to de
scribe the location of three (identical) particles lying at 
the points rb r2, r3 consists of the position 

R=t(r1 +r2+ r 3) 

of the center-of-mass, the three interparticle 
separations 

s1= Ir 3- r 21, 

S2= Ir 1- r 31, 

S3 = I r2 - r11, 

(1) 

(2) 

and a set of Euler angles 0, {3, y describing the orienta
tion of the triangle whose verticles are at rb r2, r3' 
Edmonds' conventions1 will be used for the Euler angles: 
a rotation through 0 about the z axis of the space fixed 
system is followed by a rotation through {3 about the new 
y axis and in turn by a rotation through y about the new 
z axis (in the body system). If xi> Y j, z j are Cartesian co
ordinates of r j in a right handed space fixed system, and 
~j,1'/i' I;j are the Cartesian coordinates of rj in the body 
system, then 

Xj = (coso cos{3 cosy- sino siw \ ~j 

- (coso cos{3 siny+sino cosy)1]j+(coso sin(3) I;j, 

Yj= (sino cos/3 cosy+coso siny) ~j (3) 

- (sino cos/3 siny - coso cosy) 1]j + (sino sin(3) I;j 

Z i = - (sin/3 cosy) ~j + (sin/3 siny) 1]j + (cos{3) I;j. 

Nine conditions are needed to specify the coordinates 
~i> 1]j, I;j (i = 1, 2, 3) in the body system. Three are pro
vided by the (rotationally invariant) Eq. (2), three more 
by the conditions 

1;1= 1;2= 1;3=0, 

which state that the rb r2, r3 triangle lies in the ~ - 1] 
plane, and two more by the conditions 

(4) 

~+~+~=~+~+~=O (~ 

which state that the center of mass lies at the origin 
of the ~ - 1]- I; system. The positive direction on the 
I; axis is specified by requiring that a circuit from r1 
to r2 to r3 back to r1 encircle the origin of the ~ -1] plane 
in a counter clockwise direction. 

This statement plus the conditions (2), (4), (5) fix the 
orientation of the r1, r2, r3 tirangle in the ~ -1'/ - I; system 
up to a rotation about the I; axis. If polar coordinates 
are introduced in the ~ - 1'/ plane via 

(6) 

it follows from (2) and (4)-(6) that Pb P2, P3 are given 
by 

P1=t(-S12+2s22+ 2s32)1/2, 

P2 = t(2S1
2 - S22 + 2S32)1/2, 

P3 = t(2S1
2 + 2S2

2 - Sl)1!2 

and that the angles cf>2b cf>32, cf>13 defined by 

cf>21 = cf>2 - cf>1, cf>32 = cf>3 - cf>2, cf>13 = cf>1 - cf>3 

are fixed by 

sincf>21 = (ll2)1 /2/(31 /2 p1P 2), 

COscf>21 = (S12 +S22 - 5s3
2)/(18P1P2), 

sincf>32 = (1112)1/2/(31 /2 p2P3), 

coscf>32 = (- 5S1
2 + S22 + s32)/(18P2P3) , 

sincf>13 = (Il2) 1 /2/(31 /2 p3P1 ), 

COScf>1J = (S1 2 - 5S2
2 + sl)/ (18p3P1) , 

(7a) 

(7b) 

(7c) 

(8) 

(9a) 

(9b) 

(9c) 

(9d) 

(ge) 

(9f) 

where 11 and 12 are the principal axis values of the mo
ments of inertia in the ~ - 1'/ plane divided by the parti
cle mass. Explicitly, 

11=[S12+s22+sl 

(10) 

and 

l - [2 2 2 2( 4 4 4 2 2 2 - S1 + S2 + S3 - S1 + 82 + 83 - 81 82 

- 822832 - 832S12)1/2V6 (11) 

One more condition is needed to pin down the rotation 
about the I; axis and complete the specification of the 
orientation of the rb r2, r3 triangle in the ~ - 1'/ - I; plane. 
The usual condition 

~11'/ 1 + ~2112 + ~3113 = 0 (12) 

(vanishing of the products of inertia) aligns the ~ - 11 - I; 
axes with the principal axes of the moment of inertia 
tensor and implies that 
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(13) 

with similar expressions for ¢2 and ¢3' With the usual 
choice (12), the kinetic energy operator 

fi2 3 ( 0
2 

0
2 

0
2 

) H=-- E -:::-:-:-T+~+--2 
2m ia! OXi 0Yi OZi 

(14) 

can be expressed in the form2,3 

H=Hcm+Hint (15) 

where 

li
2 (° 2 

0
2 

(
2

) 
HCm =-6m oX2+0y2+oZ2 (16) 

with X; Y, Z the Cartesian coordinates of the center-of
mass Rand 

li2 

Hint = - 2m (Tl + T2 + T 3), (17) 

where 

1-812+822+832) 02 (812-822+8a2) il2 

+ \ 8283 082083 + 8381 083081 

+ 4 (1. 2.. + 1. ~ +1.. _0_) (18a) 
81 081 82 082 83 083 ' 

T2 4(1112)1/2 ft(822-8a2) a 
31/2(11 - 12)2 ~ 81 as; 

+ (8a2 - 812)2.. + (812 - 822) ...£...1 (.i. L
t
) , (lSb) 

82 082 8a 08aJ Ii 

and 

Ta = - t(I1 -1 +12 -1)1f"2(L2 - L~) - (11 +12)(11 - 12r 2(1z-2 L~) 

+ i(I2 -1 _ 11- 1) n-2 (L! + L~) (lSc) 

with 

L' = - It' ~~ +cotjl ,~ + "c'~ (:~, + ~ - 2 co,~ ,;:,)]. 

(19a) 

L z = - iii 00
01

, (19b) 

L. = - iIi..l. (19c) • oy' 

and 

L~ = iii exp('f iy) (csc{3 0°01 - cot{3 a~ 'f i o~)' (19d) 

Here L2 is the total angular momentum operator, L z is 
the z component of angular momentum in the space
fixed system, L t , L", Lt are components of angular 
momentum in the body system, and L~ = L t ± iL" are 
raising and lowering operators in the body system. 

The traditional condition (12) has the disadvantage of 
introducing a coordinate Singularity at the equilateral 
triangle configuration 81 = 82 = 8a, where 11 =12 and the 
right-hand side of (13) is undefined. This difficulty also 
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shows up in the kinetic energy; the operators T2 and T3 
defined in (lSb) and (lSc) contain coefficients which are 
infinite when 11 = 12, The line 81 = 82 = 83 in the 81 - 82 - 8a 
space is like a square root branch point in the complex 
plane: one circuit around this line changes the right-hand 
side of (13) by 1T. Infinitesimal changes in 81, 82, and/or 
8a in the neighborhood of 81 = 82 = 83 can result in finite 
changes in the right-hand side of (41), making it awk
ward to expand about 81 = 82 = 8a. 

This coordinate Singularity has caused difficulties in 
the theory of the nonlinear triatomic molecule4 and the 
triton. 5 The present work was motivated by a desire to 
avoid similar difficulties in the theory of the exchange 
third virial coefficient. 6 A canonical transformation in 
the form of an expansion about 81 = 82 = 83 was used by 
Weigunya to eliminate the Singularity. However, such 
an expansion does not give a new coordinate system 
globally. In the next section, the usual condition (12) 
will be replaced by an alternative condition which elimi
nates the Singularity. 

A singularity is also present at those configurations 
in which the three particles are in a straight line so that 
11 or 12 vanishes. This singularity, which is accompanied 
by a decrease in the number of rotational degrees of 
freedom from three to two, will not be discussed further 
in the present paper. 

II. SOLUTION OF THE PROBLEM 

The coordinate singularity at 81 = 82 = 8a arises from 
the fact that when 11 =12, all axes through the origin of 
the ~ - 1/ plane are principal axes of the moment of 
inertia tensor, so that aligning the principal axes of the 
moment of inertia tensor with the coordinate axes no 
longer fixes the coordinate system. An obvious way out 
of the difficulty would be to replace the usual condition 
(12) by a condition such as 1/1 = 0, which places particle 
1 on the ~ axis. This solution, however, has the defect 
of treating the particles asymmetrically, thus compli
cating the discussion of the symmetry of the wavefunc
tion under particle permutation. 

In the equilateral triangle configuration 81 = 82 = 83 with 
¢1 equal to an arbitrarily chosen constant c, the parti
cles can be permuted by certain rotations which are 
equivalent to changes in Euler angles 01, {3, y. In particu
lar, the interchange of particles 2 and 3 results from a 
rotation of 1T - 2c about the b axis followed by a rotation 
of 1T about the 1/ axis; this is equivalent to the replace
ment of 01, {3, y by 01', {3', y' where 

OI'=1T+OI, (3'=1T-(3, ·y'=-2c-y. (20) 

Similar formulas hold for other permutations of the 
particles: to interchange 1 and 3, replace c by c + (21T/3) 
in the above (i. e., ¢1 by ¢2); to interchange 1 and 2, 
replace c by c + (41T/3) in the above (¢1 by ¢3)' 

The dependence of ¢1 on 811 82, and 8a for an arbi
trary configuration will now be determined by requiring 
that a permutation P of the particles be accomplished by 
applying the permutation P to the interparticle separa
tions 811 82, 8a and making the same changes in the 
Euler angles as are made for the equilateral triangle 
configurationo For example, 2 and 3 are to be inter-
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changed by replacing Sb S2, S3, Q, {3, 'Y by s1', S2', S3', 
Cl', {3', y' where Q', {3', y' are given by (20) and 

(21) 

A rotation of rr - 2c about the t axis followed by a rota
tion of rr about the 1] axis carries ¢1 (s1> S2, S3) into 2c 
- ¢1(S1o s2, S3); interchange of s2 and s3 then carries it 
into 2c - ¢1(s1> S3, S2)' The fact that particle 1 is left 
fixed by the interchange of 2 and 3 then implies the 
condition 

¢1 (S1o S2, S3) = 2c - ¢1 (s1> S3, S2)' 

Consideration of the interchange of 1 and 3 yields 

¢2(S1o S2, S3) = 2[c + (2rr/3)] - ¢2(S3, s2, s1), 

while considering the interchange of 1 and 2 leads to 

(22) 

(23) 

¢3(S1o s2, S3) = 2[c + (4rr/3)] - ¢3(S2, s10 S3)' (24) 

Because all other permutations can be built up from the 
interchanges, no further conditions need be imposed. 
The general solution of Eq. (22)- (24) is 

¢1 (s1> S2, S3) = c + i( - ¢21 + ¢13) + l(s1> S2, S3), (25a) 

¢2(s1o s2, S3) = c + 27T/3 + i(- ¢32 + ¢21) + l(s1> S2, S3), (25b) 

¢3(S1o s2, S3) = c + 4rr/3 + i(- ¢13 + ¢32) + l(s1o S2, S3), (25c) 

where 1 is an arbitrary antisymmetric function of s10 S2, 
and S3 and ¢21o ¢32, ¢13 are defined by Eqs. (9). It is 
easy to verify that (25) is consistent with (8). As a con
sequence of (9), ¢21o ¢S2, ¢u all lie between 0 and rr. 
Thus ¢I - 1 cannot stray from its value c at the equilater
al triangle configuration by more than rr/3, and is well 
behaved in the neighborhood of the equilateral triangle 
configuration. 

Let ¢101d stand for the right-hand side of (13), and 
¢1new for the right-hand side of (25a). It can then be 
shown that the difference 9 = ¢1old 

- ¢1new between the 
two specifications of ¢1 is given by 

9(s1' s2, S3) = ttan-1[N(s1o S2, s3)/D(S1o S2, S3)] 

where 

N(S1, S2, ss) = 24(31112)1/2[3(11 +12)2 

+ 41112] (S1 2 - S22)(S22 - ss2)(sl- S12) 

and 

D(S1,S2,SS) = 27(11- 12)6 +4(11 +12)[(11 +12)2 

+ 121112](S12 + S22 - 2Ss2)(S22 + S32 - 2S1
2) 

X (Ss2 + S12 - 2S2
2). 

(26) 

(27) 

(28) 

The new coordinate system differs from the old only 
in the specification of y: ynew = yDld + 9. It is easy to show 
that 9 reduces to the rotation generated by Weiguny's 
cannonical transformations in the neighborhood of s1 = s2 
= ss. The effect of this rotation on the Hamiltonian given 
by Eqs. (15)-(19) is the replacement of T2 and T3 by 
T 2' and T 3' where 
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, J(S12 - S22)(S22 - S~2)(S3 2 
- S12) 

T2 -\ 81P12P2'lPl"(31112)1/2 

- Td+RAd)(~Lc) (29) 

and 

Ts' == - t(11-
1 +12 -1)n-2(L 2 - Lc2) + [- (54P12p22p32r 1 

X [2(/1 +12)2- (I1-12)2]+± (Ol-~(AI/J]L)] n-2Lc2 
1=1 uSI 

+ t(12 -1 - 11-
1) n-2[exp(2i 9)L+2 + exp(- 2i9)L}], 

(30) 

where 

01 = - 2(27p12p22plr1(31112)1/2p12(S22 - Sl)S1-1a/as 1o 

(31a) 

02 = - 2(27p12p22p32r1(31112)1/2P22(S32 - S12)S2 -1 il/VC;2' (31b) 

0 3= - 2(27P12p22p32r1(31112)1/2p32(S12 - S22)S3-1il/ils3, (31c) 

A1 = 4 to!J + (S1 S2r
1
(S1

2 
+ S22 - S32~!;)+ (S3S1,-1 

x (S12 - S2
2 + sl) (a!J ' (32a) 

A - ( )-1( 2 2 2) (~) I il} ( ) 1 2= S1 S2 S1 +S2 -S3 OS1 +4\OS2 + S2S3-

x(- S12 +sl +S32) (o!J ' (32b) 

and 

x (0!2) +4 (0!3) • 
(32c) 

If the arbitrary antisymmetric function 1 and its first 
two partial derivatives are nonsingular at 11 = 12, then 
the operators T2' and T 3' no longer contain the singu
larity at 11 =12 which was present in T2 and T 3• Further
more, if 1 and its first two derivatives vanish at 11 = 12, 
the term T 3' can be shown to reduce to the Hamiltonian 
for a plane rigid rotator when 11 = 12• 
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The domains of definition of the operators used to factorize the generalized Veneziano model are 
studied within the Hilbert space defined by the harmonic oscillator creation and annihilation 
operators a~(r)t,a~(r). These individual operators may not be well behaved, although, of course, the 
matrix elements used in the conventional operational factorization are well defined. Concerning the 
individual operators, it is shown that the ground-state vertex written as V(p)=exp[-l;'~1 
(p. a (r)+)/vr]exp[l:;"~1 (p. a (r)/Vr] is nowhere defined within the Hilbert space; the product 
with a twisting operator o'(q)V(p) is, however, densely defined, as is the symmetrical three-reggeon 
vertex. The propagator D(p) is bounded everywhere, away from its poles. The twisting operator 
0, (p) is undefined on finite occupation states, but is densely defined on a subset of coherent states; 
its Hermitian conjugate O,+(p) is de~sely defined on both finite occupation and coherent states. It is 
found that a suitable rewritten form of the product D (q ) V (P) is densely defined for certain values 
of momenta; this relates to the fact that off-mass shell states satisfying (L 0 - L _ r - 1)1<1> > = 0, where 
Ln are the conventional gauge operators, are better defined than those satisfying 
(Lo-L_r +r-ll<l>'> =0. 

1. INTRODUCTION 

The study of the properties of the N -particle generali
zation of Veneziano's beta function dual model for two
body scattering has been greatly facilitated by the har
monic oscillator operator formalism. l This operator 
formalism makes manifest the factorization properties 
and the spectrum of states which are not obvious in the 
original integral representation. It can be written in a 
form where both the factorization and Mobius invariance 
properties are displayed simultaneously.2 For a review 
of the formalism we refer the reader to the article of 
Alessandrini et al.,3 and the references cited therein. 

In the present paper we shall be concerned with the 
operator formalism developed in Ref. 1, together with 
the twisting operator and symmetric three-reggeon 
vertex of Ref. 4. With the three operators, the propaga
tor D(p), the symmetric vertex V(PlP2 P3)' and the 
twisting operator n(p), one can, aside from the gauge 
identities (which we shall consider toward the end of 
the article in discussing the physical states), build up 
the whole theory including loops. 

We shall discuss the mathematical basis of the operator 
formalism, in particular the properties within the Hil
bert space defined by the Fock space of harmonic oscil
lator states. 

Concerning the three prinCipal operators, regarded as 
operators acting on Hilbert space states, the results 
may be summarized: The propagator D(p) is bounded 
over the whole space; the ground state vertex V(p) is 
nowhere defined, while the symmetric vertex n(q) V(p) 
and its generalization to the symmetrical three-reggeon 
vertex V(P!P2P3) are densely defined; the twisting 
operator n(p) is not defined except on states with null 
(4-momentum, while its adjoint n+(p) is densely defined. 

Of course, the Hilbert space is rather a restricted con
cept and similar difficulties of staying within a Hilbert 
space occur already in non relativistic quantum mecha
nics. 5 The conventional usage of the operator formalism 
involves always matrix elements of strings of operators 
(VD VD ••• V) and these are well defined in terms of 
generalized beta functions and their analytic continua
tion; thus the results of the present paper do not, of 
course, cast any doubt on the validity of the normal use 
of the operator formalism (Le., on the matrix elements). 
The mathematical properties of the specific operators 
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are important to know, if one wants to extract as much 
as possible out of the operator formalism. It is also of 
importance in understanding dual models and might 
provide a means for further developments and for con
struction of other more realistic dual models. 

The organization of the paper is as follows: In Sec. 2 
we give some mathematical definitions of what we mean 
by certain classes of vectors within the Hilbert space 
and introduce some terminology useful for discussing 
the domains of definition of operators. We study the 
propagator and twisting operator in Sec. 3, while in Sec. 
4 the vertex is investigated, firstly the ground-state ver
tex and then the fully symmetric three- reggeon vertex. 
Section 5 is concerned with the redefinition of the pro
duct D(q) V(p) and with the alternative definitions of 
phySical states. The final Sec. 6 is devoted to some 
discussion. 

2. MATHEMATICAL DEFINITIONS 

When we, in the following sections, are going to claim 
that certain operators are defined what we shall mean 
is really only that they are defined as operators mapp
ing a Hilbert space into itself (or possibly into another 
Hilbert space). 

The Hilbert space of interest for us is the Fock space 
in the operator formalism! of the Veneziano model. 
Let us first consider a set of occupation number states 
of the type 

(2.1) 

where 

[ a(n) a(m)t) = - li g 
11 ' v nm iJU 

with (2.2) 
°ilO 

gil v = - 15ilV (- 1) • 

Here the l~ are zero for n sufficiently large. The state 
with all occupation numbers identically equal to zero is 
called the vacuum state 1 0). 

We define the space 5' as the vector space consisting of 
all (finite) linear combinations of the vectors (2.1). We 
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call 5' the space of finite occupation states. A typical 
state If) E 5' may be written 

If) == L; c{l} I{z}), 
{l} 

where only finitely many of the coefficients C{l} are non
zero. 

The space is made a pre-Hilbert space by defining the 
inner product 

U'I r If) == L; C{;} C{l} 
{Z} 

which follows from (2.1) when we put 

~ (n)t (n) 
ao ao r == (_ l)n~l 

(2.3) 

(2.4) 

A norm is defined by II 1 f) II ::: ';(f 1 r 1 f). Note that 
this definition of the metric is not Lorentz invariant. 

Completing the space 3', we obtain the full Hilbert Fock
space Je. The points 1 h) of the Hilbert space Je, which 
we will consider in this article, can be written as for
mally infinite linear combinations of states of type (2.1), 
Le., 

Ih)== ~ CU } I{Z}), 
{l} 

(2.5) 

but now an infinite number of coefficients C{l} may be 
different from zero. However, the norms in Je are 
bounded, and it is thus required that 

~ I C{l} I 2 < ~. 
{ z} 

(2.6) 

As a consequence of the noncovariance of the metric r, 
Eq. (2.4), the Hilbert space Je is not covariant. 

An example of a state in Je is the coherent state defined 
by 

I (]f{n» == exp (~ (]f(n). a(ni
t

) I 0) , 

where we have required 
00 3 
~ ~ I (]f~n) I 2 < ~. 
n~l ~ ~o 

(2.7) 

(2.8) 

We shall denote the set of all finite linear combinations 
of finite-norm coherent states as e. 
A function '1 that maps every vector I h) E !D into a 
vector '11 h) E fl.s; Je is called an operator in the space 
Je defined on the domain!D and fl is called the image 
when it is required that each element in fl has the form 
'11 h) . 

In the following sections we shall be interested in 
whether the domain!D is a dense set in Je, i.e., whether 

!D == Je, (2.9) 

where :is is the closure of !D, according to the topology 
defined by the norm. 

We shall also be interested in whether the operators 
are bounded. A linear operator T is bounded when 

sup II '1 I h) II < ~. 
II I h>II" I 

Ih>E :D 

3. MOBIUS GROUP OPERATORS 

(2.10) 

In the operator formalism of the dual resonance model 
certain representations of the group of Mobius transfor
mations leaving a circle invariant SL(2,R) "'" SO(2, 1) 
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homomorphic to SU(I, 1) play an important role. 3 In the 
conventional model the generators are 

00 

Lo(P) == - p2 - L; na(n)t. a{n), 

n~l 00 

L+ (p) == - (2 a{l)t. p - ~ v'n(n + 1) a{n+1)t. a (n), 
n~l 

(3.1) 

Of particular interest are the following functions of 
these generators: the propagator 

and the twisting operators 

fl == (_ I)LO e-L+ = eL
+ (_ I)LO, 

fl+ == e-L- (_ I)LO = (- l)LO eL-. 

(3.2) 

(3.3) 

In the upper half of Table I the boundedness and domain 
properties of such operators are summarized. 

We now indicate how these entries in the table were ob
tained. 

(i) D(p) and D-1(p): 

On the space 5', D(p) is bounded, since the eigenvalue 
of (Lo - 1)-1 of an 5' state is bounded. This is because 
the eigenvalue of (Lo - It1 on a state If) is given by 

(Lo - It1 If,P) = L; C{l} (Lo - It11 {Z},p) 
{l} 

= ~ C{Z) (- p2 - ~ nZ~ - lr1 1{z},p) 
{l} n,jl 

(3.4) 
and the norm of this state II (Lo - It11 f) II is always 
bounded off-mass shell. Now we can apply a theorem 
about bounded operators to be found, for example, in 
Naimark's book.6 

Theorem: In a Hilbert space Je, a bounded linear 
operator A is extendible by continuity from its domain 
!D A to a bounded linear operator with ::0 A' i.e., the clo
sure of !D A' as its domain of definition. 

In the present case, since D(p) is bounded on 5' it c2:n be 
extended, therefore, by continuity to be bounded on ff = Je, 
the full Hilbert space. 

D-1 (p) is unbounded On 3', but it is defined there, i.e., 
:DD-l(P) 2. 5', which is easily seen from Eq. (3.4) written 

TABLE I. Boundedness and domain properties of operators. 

Defined 
(Le., 

Defined 
on finite 

Bounded occupa- Defined on bounded) 
on JC, tion coherent Defined on on the 

Operator 

D(P) 
D-l(p) 
n1(p) 
n(p) 
V(P) 

the full states, 
Hilbert Le., 
space :Dd g 

Yesa Yesa 
No Yes 
No Yes 
No No 
No No 

n(q)V(p) No 

D(q)V(P) (~212<~\ 2) C No 

No 

Yes 

states, 
i.e., 
:D28 

Yesa 
No 
No 
No 
No 
No 

No 

a We are always working off-mass shell for D(P). 
b Yes, ,when Pp == 0; No., otherwise. 
c IpI2=p~+e. 

a dense vacuum, 
subset of i.e., 
e :Dd 10) 

Yesa Yesa 
Yes Yes 
Yes Yes 
Yes b 

No No 
Yes b 

Yes Yes 
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for (Lo - 1). Now we consider D-1(p) acting on a cohe
rent state 

D-1(p) I a(n» = (Lo - 1) I a(n» 
co 

= (_p2 _ I; na:' an -1)1 a(n». (3.5) 
n;l 

The norm of this state is given by 

IID-1(p) I a(n» 112 

= (p2 + 1)2 ( a(n) 1 a(n» + 2(p2 + 1) 

xE1 nla(n)12(a(n)la(n»+[(~1 nla(n)12)2 

- P1 n 2 I a(n) 12J (a(n) I a(n», (3.6) 

and the summations can diverge, while still ( an I an) is 
finite. Therefore,D-1(p) is not defined on~. It is, how
ever, defined on a dense subset, for example, the dense 
subset { I an = nzn )} ,where I z 1 < 1 and n is a constant 
4-vector. 

(ii) n+ (p): 

On a state of the ff' space we have 

n+(p) It> = (- 1)Lo(P) eL(P) It>. (3.7) 

Now the exponential in 1 L (p) 1 becomes a polynomial; 
also the mOdE( summation in L_ (p) is finite. Therefore, 
the state e L 

Pi 1 f) has finite but unbounded norm. The 
operator (- 1)Lo(P) is unitary and, therefore, norm pre
serving. It follows that_n+(p) is defined on ff' ,but un
bounded on both ff' and ff' = :Ie. Since I 0) c ff', n+{p) is 
defined on the vacuum. 

For a coherent state 1 an ,p) 

n+(p) I an ,p) = (- 1) Lo(P) eL(O) exp (- P1 _n_ I an,p). a 'P) 
m 

(3.8) 

USing the canonical formalism of Alessandrini et al.,3 
we now have 

eL-(O) I anP) = I'" Cap) LJ nm m' , 
m 

(3.9) 

where 

E1 Cnm ~ ,,1n (1 ~ zy . (3.10) 

Thus, (00 ) 
lIe

L
(0)la n ,p)112=exp E1Im~n(~y/2(:)amI2 

= exp(E1 I an 12 

+ E1 ..In(n + 1) la n +1 12 + .. ) 

(3.11) 
which for all an > 0 can be divergent even for ~ I an 12 
finite. To show that it can be defined on a dense set of 
~, we use an = n Zn 1m with I z 1< 1; then we have 

lIeL(P)lanP)1I2=exp(lnI2 I; 1_I_z_12n) 
n;l"jn 1 - z 

x exp [ - 2 Re(E1 : n . p) J. (3.12) 
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where In 12 = n5 + ii2, which is convergent for Rez < ~. 
Therefore, n+(p) is defined on a dense set in ~. 

(iii) n(p): 

For general p2 we have 

Iln(p)1 0)11 2 = exp(lp 12 n~l ~). (3.13) 

Note that for plJ = 0 we have ncO) 10) = 10). Thus, on 
vacuum, n{p) is not defined within the Hilbert space for 
PIJ ~ O. 

For an occupation state If) we investigate first a singly 
occupied level, where 

II nco) a; 10,0) 112 = II e-L+(O) a; 100) 112 

= E 1 (q+n)! (-q-) 11/2 = CO, 
n;O q!n! q + n 

for any q ~ 1, 
(3.14) 

where we have used the explicit form of L+ (0), Eq. (2.1), 
and the fact that (- 1)Lo(0) is unitary. It is not difficult 
to convince oneself that this argument generalizes to 
any If) state._Therefore, nco) is unbounded on ff' and 
on its closure ff' = :Ie. 

For a coherent state we can write 

II n{p) Ian) 112 = II {- 1)LU (P)e-L+(O)exp(.f;l alP) I an) 112 

= exp [E1 ~ I E1 (~) 
x ..Jm (- 1)m a;:' - pi' 12]. (3.15) 

If we choose a':,. = - zmplJI..fiii such that Iz 1< 1 /\ 11-z I 
< 1 then this leads to a finite norm. By adding to a;:' 
lower powers of z (obtained by differentiating am as is 
discussed in more detail for the vertex in Section 4 be
low) we can show that n{p) is defined on a dense subset 
of ~, although not on ~ itself since ~ includes states with 
a~ such that, for example, 0 > z > - 1. 

4. THE VERTEX 

In this section we consider the conventional untwisted 
vertex yep) for emission of a scalar ground state meson; 
the result will be that yep) is nowhere defined within the 
Hilbert space. We shall, however, find that the twisted 
vertex n(p + q) yep) is a densely defined unbounded 
operator. More generally the cyClically symmetric 
Caneschi-Schwimmer-Veneziano vertex will be found 
to be defined for a certain dense set of coherent states 
in the sense that, putting in one type of coherent state on 
one leg, together with another type on a second leg, one 
will obtain at the third leg a normalizable state. 

We shall first give some rather simple and convincing 
arguments that the vertex V{P) is not defined as long as 
the momentum p has no time component (which is pos
sible for special space like momentum), and further is 
not defined, for general momentum, on any e or ff' state. 
Only then shall we introduce a more abstract approach 
to demonstrate that V(P) is quite generally undefined. 

The conventional ground state vertex in the operator 
formalism is written formally 

Yep) = exp (- f (a<n)+.p») exp (f (a<n).p») (4.1) 
~! rn IF! rn 
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so that the N point function can then be written formally 
(in a multiperipheral configuration) 

AN = (0 I V(k2)D(SI2)y(k3)D(SI3) ••• V(kN- 2) 

x D(SN-l,N)V(kN-l) 10) , (4.2) 

where Sij = (Pi + Pi+1 + ... + P)2, and the bra and ket 
vacuum states have momenta kl and kw respectively. 

We now will show the unhappy result that the operator 
V(P) is not defined anywhere within the Hilbert space. 
Define an operator 

V/P) = exp (- f a (n)t. P xn) exp (f a (n) . P XII) ( 4. 3) 
n=1 rn h=1 ..fii 

so that lim Vx(P) = V(P); also define, for momentum with 
no timeXCAmponent, the unitary operator 

U(p,x)=exp(p·f ~xn(a(n)_a(n)t»). (4.4) 
\ n=l..jn 

U(P, x) is unitary (and bounded) in g:. Now, we use the 
fact that 

V 11/1) EJe:3 a sequence {I ¢n > } :=1 
such that 

lim I ¢n> = 11/1> where all I ¢i >E g: • 
" .... "" 

Now we observe that 

Vx(P) = C(p,x)U(P,x) 

with the e number 

e(p,x) = exp - -E - . ( 
p2 "" xn) 
2 n=1 n 

(4.5) 

(4.6) 

(4.7) 

Now, since U(P, x) is unitary for all x, we can consider 

~~ll!ollu(p,x)l¢n)112 = ~.rn""III¢n>1I2 = 1111/1)112, (4.8) 

and then we see that 

II Vx(P) I ¢,,) 112 = I e(p, x) 12 II U(P, x) 1 ¢n) 112 

= le(p,x) 12111¢n)1I2. (4.9) 

Therefore, Vx(P) is bounded by I e(p, x) 1 and, for Ix 1< 1, 
Vx(P) is defined on g:. For x ~ 1, however, on a general 
state I 1/1) , 

lim II Vx(P) 11/1) 112 = lim I e(p, x) 12 1111/1) 112 
x-+l x-+l 

= 00. (4.10) 

Thus we deduce, for momentum with no time component, 
that Yep) is undefined everywhere in the Hilbert space. 

For generaIPJ.L, it is easy to show that Yep) is not de
fined on any coherent state or any g: state, as a Hilbert 
space operator. In the case of a coherent state 1 tan} , 
q> there occurs, in the norm II V(p) 1 {an}' q > II, an 
exponential of a term 

[(t2 + P~) Rl ;; ] 
which cannot be cancelled by any choice of the an such 
that 

That V (P) is not defined on g: states is seen by noticing 
that the harmonic oscillatoJ:"s above a certain mode 
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number are excited by V(P) in just the same way as 
mentioned already for the coherent state. 

The more abstract general proof for the nonexistence 
of V(P) proceeds in three steps: (i) the derivation of an 
operator identity for Vx(P) t r Vx(P); (ii) the proof that 
the expectation value of an exponential of a Hermitian 
operator is strictly greater than zero; and (iii) the de
duction from (i) and (ii) that any image of Yep) has 
infinite norm. 

(i) By using the commutation rules, Eq. (2.2), for the 
harmonic oscillator operators, it is straightfor
ward to find that (formally), for p~ = (POi'!!)' 

Vx(p)trvx(p) = exp (P~El a~xn)exp(_p~ Rl at") r 

= (1- x2f3P~-!:, Ux exp (- Hx)r exp (Hx)Ux 

as an operator identity, where 

is Hermitian with respect to the indefinite metric 

and unitary with respect to the r metric 

U-1= ru~r x 

and where 

"" a - at 
'" nO nO Hx=PoL..J rn xn 
n=1 n 

is Hermitian in the r metric 

In deriving Eq. (4.11) we used 

( 4.11) 

(4.12) 

( 4.13) 

(4.14) 

( 4.15) 

(4.16) 

exp 2Po E nOr = (1- x2 )-PO exp (H)Ux ' 
(

""a xn) 2 -

n=1 vn 

The r norm squared of V(P) 1 h), where I h > E X, is the 
expectation value of this operator (4.11), and from the 
ultimate step in Eq. (4.11) we see that this expectation 
value is equal to a diverging e number multiplied by 
the expectation value of an expontial exp (2H) for the 
state Ux I h >. Since Ux is unitary and so bounded, this 
state U)h) existsJor alllh)EJCand is in fact different 
from zero, since II u) h) II = III h > II. 

(ii) Now we wish to show that the expectation value 
(h I exp (H) I h) , for H a Hermitian operator, is greater 
than zero. 

According to the spectral theorem of von Neumann7 for 
Hermitian operators, we may write the Stieltjes integral 
form olH 

(4.17) 

where It is the family of projectors for the operator H. 
More generally, we may make such an integral repre-
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sentation for any operator function of H, using the same 
spectral function It; in particular, 

exp (H) == Joo exp (t)dlt • _00 
(4.18) 

The resolution of the identity It is defined such that 
lim It == 0 and lim It == 1. Therefore, there exists at' 
tsuCh that t .... + 00 

whereupon, writing 

(h lexp (H) Ih) == 1~ exp (t) (h Idltlh) 

+ ~,oo exp (t) (hldItlh), (4.19) 

we see that the first term on the right-hand side is 
greater than or equal to zero, while the second term 
satisfies 

~,OOexp (t)(hldItlh) ? exp (t')~,oo(hldltlh) 
== exp (t')(h 1(1 - It') Ih). (4.20) 

It follows that 

(h lexp (H) Ih) > O. QED (4. 21) 

(iii) Now we combine the results of Eqs. (4.11) and 
(4. 21) to deduce that 

IIV(p) Ih) 112 == 1im[(1-x2)-3P~-p 
%-+1 

x (hIU; r exp (2Hx)Uxlh)] (4. 22) 

== (~~T(1-X2f3P~-P)'(h lUI rexp(2H1(u1Ih) 

== CQ. 

By this we have shown the the vertex V(P) is nonexistent 
within the Hilbert space. 

Despite the bad properties of Yep) the operator 0 V cor
responding to the cyclically symmetric vertex can in 
fact be defined somewhere even for spacelike momentum 
of the ground state particle. Note that we must regard 
the operator 0 V as a single entity rather than as a pro
duct of two operators, if we wish to remain in the Hilbert 
space. In fact let 

00 a a (n)t I 0 ) 
la,q) == I1 e n' ,q (4. 23) 

n~l 

be a coherent state with 4-momentum q; the twisted 
ground state vertex is formally written O(q + P)V(P) 
when acting on I a, q) , and 

O(P + q)V(p)la1q) == 0(0) exp(p + q).2)a~~n 

(-P'E a~t) (P'EaJ;) 
exp (-P • E a;t) exp (p . E a;) I a, q) == 

== exp (- q i3 a(n)t): exp- E a (n)t(Cnm - 0nm)a(m»): 
n~l rn n,m 

exp (p . E a;;) I a, q») 

==exp(p'El rnJ \ {-ycijaj-ql i~l'2, ... ,q>. 
(4.24) 
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It is rather easy to see, by taking, for instance, 

an==zn/rn'q withlzl<1AI1-zl<1 (4.25) 

and using3 

(4. 26) 

that the expression for the formal symbol O(P + q) V(P) 
la, q) becomes 

( 

00 Z n) \ { (1 - Z) i } ~ exp P'q'R1 -;;- -..[[ q i~l,2, ... ,;;,(4.27) 

which is a finite norm coherent state. To be specific, 
the norm is 

(4.28) 

and this exponential is finite when 1 z 1 < 1 and 11 - z 1 

<1. 

The possibility (4.25) is only one out of infinitely many 
since we can add to the series a any series for which 
C·p has finite norm, i.e., for which 

~11 121 C nm Pml 2 < 00. (4.29) 

By using (4.26) it is easy by differentiation, for example, 
to find an infinite number of such series f3, namely 

f3~") ==n(n-1) .•• (n-r + 1)Zn-.. /rn, (4.30) 

where z == 1,2, .•. and Izl(1 A 11 - z 1< 1. In fact one 
finds 

~C f3(") - (-1)" (1-z)n-"n(n -1) ••• (n -r + 1) 
L.J nm m - ~ , 
m~l vn 

(4.31) 

which is obviously of finite norm because 11 - z 1 < 1. 
We remark for its own interest that for z == ~ the series 
f3mis an eigenvector of thematrix C with eigenvalue 
(- 1)". 

We now want to show that by meansof the coherent states 

(4.32) 

where c .. are 4-vectors, it is possible to argue that the 
operator OV is defined on a dense domain in the Hilbert 
space. 

Since any coherent state 1 a) (with E I an 12 < (0) can be 
approximated by another one I a') provided we can 
approximate the series a by a' in the norm of the Hil
bert space l2 of series with convergent square sum, 
we can show that the states of type (4.32) can approxi
mate any coherent state. By choosing z in (4.30) small 
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but different from zero, one easily shows that linear 
combinations of series f3 can approximate any series 
which has only zeros after a certain step and thus any 
series at all. By choosing z suffiCiently small we can 
make the norm of 

{(Zi /.[[ )q}i=1,2 • .•• 

arbitrarily small too; thus states of the form (4.32) can 
approximate any coherent state and so by taking finite 
linear combinations we can approximate all states in 
the Hilbert space by states for which n V is defined. 
That is to say, n V is densely defined. 

It is rather easy to see that also the Caneschi-Schwim
mer-Veneziano three-reggeon vertex4 is defined on a 
dense set in the following sense: The;re exists a dense 
set of vectors 11) for which the "vertex operator" 

(4.33) 

mapping the space 2 into space 3 is densely defined, i.e., 
has a dense domain in Hilbert space 2. 

We shall see that the domain in space 2 can be chosen 
the same whatever the state 11) is as long as 11) belongs 
to the dense set mentioned in space 1. 

In fact we can, for the cyclically symmetric vertex 

V(P l'P 2'P 3) == a< 0 I b< 0 I exp {-P1' c t + P 2' a + P 3' b 

+ [ab]_-[bct]_-[ctalJla)lb) IO)c (4.34) 

in which 

show that it is defined for the following coherent state, 

la) = I {~ P1 + f~teCrf3~r)}nOl.2 ••.. ,PV (4.35) 

[a state of type (4.21)], where 

Izl < 1 II 11 - z 1< 1, (4.36) 

and a state I b) that is either a finite occupation number 
state or a coherent state with only finitely many modes 
excited. We shall prove it explicitly for the latter case. 

It is in fact rather easy to check that with such states 
I a) and I b) the vector (4.34) becomes of finite norm. 
First it is noticed that both I a > and I b > are eigenstates 
of, respectively, e P2 •

a and e P3 •
b with finite eigenvalues 

because of, respectively, the exponential convergence 
z n and the cutoff. Secondly 

exp ([ab]J la) Ib) 

= exp (convergent c number) I a) I b) , (4.37) 

because of the cutoff in the excitations in I b) and the ex
ponential decrease from I a >. Thirdly, also in the factors 
involving e t can the a's and b's be replaced by e numbers 
and the overlap with the vacuum states a < 0 I b< 0 1 just 
results in a finite e number too. So the whole expression 
becomes a formal coherent state in space 3, i.e., for the 
form 

(4.38) 
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and the only thing to be checked is that the norm is 
finite, and that will be the case provided 

00 

6 IYnl2 <00. (4.39) 
n=1 

The contribution to 6:01 ylle(n)t from [bet L is only dif
ferent from zero for a finite number of Yn ' i.e.,n:5 N. It 
is thus not able to spoil (4. 39). The main trick is that 
we have arranged it so that although both - [eta] and 
- P 1 oct give contributions that violate (4.39) the sum 

{-p 1 o e t -[e t a]J 

gives a contribution that obeys restriction (4.39). In fact 
the term (z n/..fii)p 1 is accurate:x constructed to provide 
this cancellation; the terms 6!0 r Cr f3 (r) give rise 
through - [e t a]_ only to a contribution obeying (4.39). 
This completes the proof that the cyclically symmetric 
vertex is densely defined. 

5. THE PRODUCT D(q)V(p); PHYSICAL STATES 

We have shown that the ground state vertex V(P) is in 
general nonexistent in the Hilbert space. However, con
sider the combination 

D(q)V(P) == r dx x LO-
2V(p) 

o 
== Ia1 dx V(P 1x)x £0-2 , (5. 1) 

where 

V(P 1x) = exp (-i3 ar;PI' x r) exp(f ar~J' x- r). (5.2) 
r=1 'Vr r=1 'Vr 

We can use the combination of operators in Eq. (5. 1), de
fined by the integral expreSSion containing V(P, x). The 
rule should be that the integration is done after the in
tegrand has operated. Consider this operator acting now 
on a coherent state 

( 
00 all) 

x exp 2PJ' 6 ,.; , 
n01 vn 

(503) 

where IpI2 =P~ + p.? and I an op I = (QnOPo + :!..n .P)o The 
last two exponentials are finite on a dense subset of «; 
(namely provided 60'n/.fii < 00). 

Hence, on this dense set the norm is finite if q2 < - 1 and 
Ip 12 < + 2 to avoid singularities at the lower and upper 
end pOints, respectively. This redefinition of the product 
D( q) V(P) is thus defined on a dense subset of «; for these 
momentum values. 

The fact that the product of propagator times ground state 
vertex is better defined than the vertex alone has some 
interesting consequences on the definition of an off-mass 
shell physical state, if we require that the off-shell state 
remains normalizable within the Hilbert space. In 
general a physical state defined by its coupling to N 
ground state particles, 

(5.4) 

satisfies the gauge conditionS 

UJ_ r lcf1) = (Lo - L -r -1) 1<1» = O. (5.5) 
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If we redefine a physical state without the final propaga
tor, then it satisfies instead the conditions 

I~') = V(k 1)DV(k2)D" 'DV(kN - 1) 10), 

W-rl~') = (Lo -L -r + r -1) I~') = o. 
(5.6) 

In view of the nonexistence of V(P) as a Hilbert space 
operator, we expect that the 1 CP') states defined by Eq. 
(5.6) be not normalizable, and it is amusing to confirm 
this by constructing such states within the irreducible 
representations of the gauge algebra. 

In Ref. 9, it is described how to analyze the spectrum of 
states in terms of irreducible representations of the 
Virasoro algebra, with generators L r r = 0, ± 1, ± 2, 
± 3, .. '. For the present purpose we note that an exactly 
similar analysis for spacelike momentum can be made 
usin€!: irreducible representation of the Gliozzi aigebra10 

with generators L o, L±l' Each irreducible representation 
of the Gliozzi algebra then contains one and only one 
state (that having lowest Lo eigenvalue) which satisfies 
L-11 ~,,) = O. All other states, obtained by raising with 
L+1 are the a states. 

Within each representation of the Gliozzi algebra it is 
straightforward to determine the unique state which is a 
physical state according to the definitions (5. 5), (5. 6), 
respectively (for r = 1). We may write for the former 
case 

1~)=23 an(L1)nl~",c), (5.7) 
n;O 

where 
Lo I~", c) = c I~", c), L-11~", c) = O. 

Using the commutation relation 
n-1 

[L_l'L~] = 2:0 L~LoL~-q-\ 
q;O 

(5.8) 

one finds that the condition (5. 5) for r = 1 gives, putting 
a o = 1, 

an = (lin!) [r(c + h - l)r(2c)/r(c - 1)r(2c + n)]. 
If (5.9) 

111~",c)11 = 1, 

One then finds, always for spacelike momentum with 
zero energy, that 

<~I~) =23 (~ (C+ q -2)2). (5.10) 
n;Q q;1 q(2c + q - 1) 

For large n the square bracket behaves as 

~ (c+q_2)2 n->OO l..
qo1 q(2c + q - 1) ----' n 3 

so that the state 1 ~) has finite norm. 

If we write, however, 

I~') = 23 a~ (L1)n I~", c), 
n;Q 

satisfying (5. 6), then one finds 

W) = ~ ~ r(c + n)r(2c) (L )nl~" c) 
n;on! f(2c+n)r(c) 1 " 

and hence 
<~'I~') = f; (~ (c + q-l)2) 

noO q;1 q(2c + q - 1) 

n large QO 1 
----- :0 -n 

giving a logarithmically divergent norm. 
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(5.11) 

(5.12) 

(5.13) 

(5. 14) 

We deduce that unless c is a negative integer, where
upon the summations in Eqs. (5. 7) and (5.12) may cut 
off, all states satisfying Eq. (5.6) are nor normalizable. 
The states satisfying Eq. (5.5), on the other hand, can be 
normalizable. Thus, the w-r condition for an offshell 
physical state is more satisfactory in this respect than 
the ~r definition. This is as expected from the better 
definition of D(q)V(P) in Eq. (5.1) than that of V(P) alone 
of Eq. (4.1). 

6. SUMMARY AND DISCUSSION 

We have studied the properties of the three fundamental 
operators in the operator formalism: D(P), V(P1P2P3) , 

and n(p). We have found that the vertex for ground state 
emission V(p), is strictly speaking nonexistent within the 
Hilbert space. The twisting operator n(p) is also non
existent when acting on any state with nonnull 4-momen
tum; its Hermitian conjugate is, however, densely defined. 
The propagator D(P) is everywhere defined off-mass 
shell. 

We have noted that the product n(q)V(p) and, more gene
rally, the symmetric three-reggeon vertex V(123) are 
densely defined. Also, the product D(q)V(P) can be well 
defined and this was related to the recognition that states 
annihilated by w-r = (Lo - L-r - 1) were more suitable 
candidates for off-shell physical states than states 
annihilated by W-r = (Lo - L_r + r - 1). 

The fact that not all operators and their image states can 
be represented within the Hilbert space is not very sur
prising because similar difficulties already occur in 
nonrelativistic quantum mechanics, where for example, 
the position operator acting on a square-integrable 
wave function can give a new function outside of the Hil
bert space spanned by the set of all square-integrable 
functions.5 In that case, extension to a larger space has 
proved useful.ll 

To conclude, we re-emphasize that the usual operator 
factorization (with matrix elements taken) of the gene
ralized Veneziano model is well defined; it is only when 
we study the operators D, V, and Q, in isolation, as Hil
bert space operators, that the question of good defini
tion arises. The matrix elements usually considered 
are scattering amplitudes, and for these we know the 
analytic structure and can continue analytically to any 
kinematical region. If we isolate operators or operator 
products, then there are no similar analyticity assump
tions for these and, therefore, we have to understand 
their mathematical properties in order to use them 
correctly. 
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The electromagnetic field scattered from two perfectly conducting, circular, coaxial disks is calculated 
when the incident field is a plane wave. Two quantities are of special interest: namely, the electric 
field at the center of the axis of the two disks and the integral of the electric field along the axis 
between the two disks. Analytical expressions for the low-frequency behavior of these two quantities 
are derived in the case where the distance between the two disks is large compared to the radii of 
the disks. For other frequencies and for separations of the two disks not too large these two 
quantities of interest are calculated numerically. Expressions for the scattered far field are also 
derived. 

I. INTRODUCTION 

One type of sensor for measuring the electric field is 
the parallel plate dipole. This sensor consists of two 
thin, perfectly conducting, parallel plates with some 
suitable electrical device for picking up the electric field 
or voltage between the two plates. In this paper we will 
analyze the characteristics of a symmetrical, parallel 
plate dipole conSisting of two perfectly conducting cir
cular disks and obtain quantitative information on the be
havior of this dipole for a wide range of frequencies. 

Electromagnetic scattering from one circular disk, 
two or more coaxial disks, or an annular ring has been 
treated by many investigators using a special integral 
equation technique. 1-6 A somewhat different integral
equation approach is discussed in Ref. 7. In all these re
ferences the electromagnetic scattering problem is re
duced to the solution of a Fredholm integral equation of 
the second kind. The problem of acoustic scattering from 
any number of equal circular holes arbitrarily distri
buted in an infinitely large, rigid plate can be solved by 
a method of expansion in hypergeometrical polynomials. B 

An account of all methods available for solving the clas
sical problem of acoustic and electromagnetic scattering 
from one disk can be found in Ref. 9. 

However, no quantitative results seem to exist, ex
cept in some limiting cases, for the scattering from two 
or more coaxial disks. In this paper we will use the 
theory developed in Refs. 1-6 to obtain quantitative in
formation about the scattered field for a wide range of 
frequencies. The approach we use is general and can be 
applied to the problem of scattering from any number of 
coaxial disks having different radii. 

To begin with, the two disks are assumed to have the 
same radius, to be of zero thickness, and to be exposed 
to an incident plane wave. Specifically, we will calculate 
the electric field at the center of the dipole and the in
tegral of the electric field between the two plates along 
the axis of the dipole. Expressions for the scattered far 
field are also derived. 

In Sec. II we first scalarize the problem of two paral
lel, coaxial disks of different radii by expressing the 
scattered electromagnetic field in terms of the compo
nents of the Hertz potentials. From the solutions of 
these differential equations together with Green's theo
rem, some suitable transformation, and the edge condi
tions, we formulate, in Secs. III and N, pairs of simul
taneous Fredholm integral equations of the second kind. 

From a knowledge of the solution of these integral equa
tions the scattered electromagnetic field can be calcu
lated everywhere by performing simple integrations. 

In Sec. V we express both the axial component of the 
scattered electric field on the axis of the two disks and 
the integral of this field along the axis between the two 
plates in terms of single integrals which involve the sol
ution of the integral equations formulated in Secs, III 
and IV. These equations are solved iteratively for low 
frequencies and for large separations between the disks. 
These iterations are used to derive asymptotic expres
sions for both the electric field at the center of the dipole 
and the integral of the electric field along the axis be
tween the two plates. For other frequencies and separa
tions not too large compared with the disks' radii these 
two quantities are calculated numerically and graphed as 
a function of frequency for different sizes of the sensor 
and angles of the incident field. 

II. FORMULATION OF THE BOUNDARY CONDITIONS 
IN TERMS OF THE HERTZ POTENTIALS 

The electromagnetic boundary conditions on two per
fectly conducting, circular, coaxial disks will be invoked 
to derive and subsequently solve a set of ordinary dif
ferential equations for certain components of the Hertz 
potentials for the scattered field. The two disks taken to 
be infinitely thin are separated by a distance 2d and their 
radii are denoted by a. and a_, respectively (see Fig. 1). 
In cylindrical coordinates, the locations L. of the two 
disks can be expressed mathematically in the following 

z 

y 

FIG. 1. The geom
etry of the problem. 
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way: ~.={(p,cP,z):O~p~a., O~CP~21T, z=:l:d}. We will 
calculate the scattered field when the two disks are il
luminated by a plane, monochromatic wave. The har
monic-time dependence exp(-iwt) will be understood and 
suppressed throughout the paper. 

It is convenient to assume that the incident field can 
be split into two separate fields: one with the magnetic 
field parallel to the disks and the other with the electric 
field parallel to the disks. The boundary-value problems 
for these two different incident fields can be treated sep
arately and the solution for an arbitrary incident field 
may then be obtained by superposition. We will first 
treat the case where the incident magnetic field is paral
lel to the disks. 

A. Incident magnetic field parallel to the disks 

Let the incident field be a plane wave such that 

EiDe = Eo(x cosa + z sina) exp(ikz cosa - ikx sina) 

HiDe = EoZr/yexp(ikz cosa - ikx sina) 
(1) 

where k=w/e, e being the vacuum speed of light and Zo 
the free -space wave impedance. The angle of incidence 
a is defined in Fig. 1. The scattered field can be deter
mined from the magnetic and electric Hertz potentials, 
1T(m) and 1T(e), as follows: 

E"e=iwVXlT(m) +VXVX1T(e), 

B"e= V XVXlT(m) - ike-1V XlT(e), 

where 1T (m) and 1T (e) both satisfy the Helmholtz equation 
V 21T + k 21T = O. 

Let us now choose some suitable series representa
tions for the components of the Hertz potentials. If these 
representations satisfy all the required conditions, i. e. , 
the Helmholtz equation, the boundary conditions on ~., 
the edge conditions at the boundary of ~., and the radia
tion condition at infinity, then, in view of the uniqueness 
of the solution of the electromagnetic scattering problem. 
the assumed representations are justified. Assume that 
the Hertz vectors for the scattered field can be repre
sented in the following way: 

.. 
1T~m) =E6(iW)-l ~ ~""'l(P, z) sinmcp, 

m=l 

1T~m) = Eo(iw)-l:t ~m-1(P' z) cosmcp, 
m=l 

1T!m) = E o(iW)-l t Tim(p, z) sinmcp, 1f(e) = EolJ!(p, z)z, 
_1 

where ~m and 1Jm satisfy the differential equation 

{ 
32 13m2 32 }{m 
~+---""3'+-:::-:2+~ =0 op P op P 3z ~m 

and IJ! satisfies (4) with m = O. 

To determine the Hertz potentials for the scattered 
field on ~., we will use the boundary conditions on the 
two disks, 

(3) 

(4) 

(5) 

ExpreSSing the incident field (1) in cylindrical coordi
nates, making use of the expressions (2)-(4) for the 
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scattered field, and invoking the boundary conditions (5), 
we derive three ordinary uncoupled differential equations 
for 1J,.(p, z), ~m(p, z) which are valid on ~ •. A solution of 
these differential equations is given by 

1l;'(p) = 1lm(p, ± d) = B~pm + A~J m(kp sinal, 

3~ 
a~(p) = 3; (p, ± d) 

= (m + I)B~lpm + ksinaA;'.lJm(kp sinal, (6) 

3o~ (p, ± d) =B~ -A~Jo(kp sinal, 

where 0"" p "" a., A;'=Emi-m+1k-1 cota exp(±ikdcosa), Em 

=2, m~l, and Eo=1. Moreover, B;,areunknowncon
stants of integration to be determined later from the 
edge conditions at p = a., and Jm(x) are Bessel functions 
of the first kind. 

Having derived the expression (6) for the Hertz poten
tials of the scattered field when the incident magnetiC 
field is parallel to the disks, we now go on to derive a 
corresponding expreSSion when the incident electric field 
is parallel to the disks. 

B. Incident electric field parallel to the disks 

Let the incident field be a plane wave such that 

E iDe = Eo'y exp(ikz cosa - ikx sina). (7) 

In this case, the scattered field can be obtained from the 
magnetic Hertz potential alone, 

(8) 

and IT(m) can be expanded in the following Fourier series: 

.. 
1T~m) = Eo'(iw)-l ~ X,.. 1 (p, z) cosmcp, 

m.1 

1T~m) = -EO'(iw)-l t Xm-1(P, Z) sinmcp, (9) 
m=l 

1T!m) = Eo'(iw)"l t T m(p, Z) cosmcp. 
m=O 

The boundary conditions (5) on ~"" an expanSion of the 
incident field (7) in cylindrical coordinates, and the ex
panSions (8)-(9) of the scattered field enable us to de
rive the following expreSSions: 

T;'(p) = T m(P' ± d) =D;,pm + C~Jm(kpsina), 
(10) 

oX 
fJ;.(p) = a; (p, ± d) = (m + 1)n:..1pm, 

where O~p""a., C;'=Emi"m+1(ksina)"1 exp(±ikdcosa), and 
D;, are unknown constants to be determined later from 
the edge conditions at p = a •• 

To sum up this section, the boundary conditions on the 
disks combined with a suitable choice of the form of the 
Hertz potential for the scattered field [(3) and (9)] have 
enabled us to derive the expressions (6) and (10) for the 
Hertz potentials on the disks. From these expressions 
and the scattered field being continuous off the disks and 
satisfying the Sommerfeld radiation condition, it is clear 
that Tim' T m' a ~/3z, and 3Xm/3z are continuous functions 
of p and z everywhere (including ~.). 
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III. REDUCTION OF THE SCATTERING PROBLEM TO 
INTEGRAL EQUATIONS 

In this section, we will reduce the electromagnetic 
boundary -value problem of scattering from two circular 
disks to the solution of Fredholm integral equations of 
the second kind. In deriving these integral equations we 
will make use of the boundary conditions derived in the 
previous section for the Hertz potentials. Once the solu
tion of these integral equations are found, the scattered 
field can be obtained from a simple integration. We will 
start with the derivation of integral equations for Tim(p, z) 
and T m(p, z), and then for /:'m(P, z), Xm(p, z), and 1/J(p, z). 

A. Integral equations for TIm (p,z) and Tm (p,z) 

By applying the Green's theorem to the function 
1)m(P, z) exp(im</» in the region outside the disks and ob
serving that this function is a continuous function of z on 
1:± and that it satisfies the radiation condition at infinity 
we arrive, after some algebraic manipulations, at the 
following integral expression: 

1)m(P, z) 

= t 1oa+ 1o~ pw-1Jm(pp)Jm(pp') exp( - w I z - dl )p'y+(p')dp'dp 

+ t 1oa- 10 ~ pw-1Jm(pp)Jm(pp') exp( - w I z + dl) 

x p'y-(p')dp'dp, (11) 

where w = (p2 _ k2)1/2, p> k, and w = _ i(k2 _ p2)1/2, P < k. 
The path of integration in (11) is along the real axis in 
the complex p plane and with a downward indentation at 
p = k. Moreover, y:,(y-;,.)ls the discontinuity at z = d 
(z=-d) of (1),,/oz, i.e., 

. a 1) (1) 
y:'(p)=llm ~(p,d-E)-~(p,d+E) • (12) ,-0+ oz oz 

Substituting into (11) the expression (6) for 1)m(P' z) on 
1:., we arrive at the following set of coupled integral 
equations of the first kind for y~(p): 

1;;+ Km(p, p', O)p'y:,(p')dp' + 1oa-Km(p, p', 2d)p'y-",(p')dp' 

= 1);;'(p) , 0 ~ p ~ a+, 

1oa·Km(P, p', 2d)p'y;;'(p')dp' + 1oa-Km(p, p', O)p'y-;,,(p')dp' 

= 1)-",(p), 0 ~ p ~ a_, 

where 

Km(p, p', z) = t 1o~ pw-1Jm(pp)Jm(pp') exp(- w I z I )dp 

and the functions 1)~(p) are defined by (6). 

(13) 

The kernel, Km(p, p', 0), in (13) has a logarithmic sin
gularity at p' = p. A general procedure for transforming 
a certain class of one -dimensional integral equations 
into a set of Fredholm integral equations of the second 
kind has been developed in Ref. 4. An extension of this 
method shows that we can obtain the solution of (13) from 
the integral expreSSion 

y' (p) = _ !pm-l.!. [a± (u2 _ p2)-1/2 
m 7r dp p 

(14) 

provided that the functions Y;"(u) satisfy the following set 
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of Fredholm integral equations of the second kind: 

Y;;'(u) + 1oa
+ Lm(u, v)Y;;,(v)dv + 1oa- Mm(u, v) Y;;,(v)dv = F;'(u) , 

o ~u~ a., 

Y;;,(u) + 1oa+ Mm(u, v)Y;,(v)dv + 1;;- Lm(u, v)Y;;,(v)dv = F;;'(u) , 

O~u~a_. (15) 

The kernels Lm(u, v), Mm(u,v) and the right-hand side 
F~(u) in (15) are given by the integral expreSSions 
Lm(u, v) = L(u, v;m, m - t), Mm(u, v) =M(u, v;m, m - t), 
where 

L(u, v;m, v) = (UV)1/2 10 ~ wl-2m[(~ + w2)m - w2m ]J)wu)Jv(wv)dw 

+ i(uv)1/2 10k Wl-2m(~ - w2)m1v(wu)I)wv)dw, 
(16) 

M(u, v;m, v) = (uv)1/2 10 ~ p2m+lw-2mJ)wu)Jv(wv) exp(- 2wd)dp, 

and 

F± (u) = 2u-m ~lu (u2 _ p2)-1/2 cosh[k(u2 _ p2)1/2] 
m du 0 

xpm+l1l;,.(p)dp. (17) 

Thus, the functions 1)m(P' z) can readily be calculated 
from the integral expreSSions (11) and (14) once we have 
obtained the solution of (15). In this sense we have re
duced the problem of finding 1)m(p, z) to solving a Fred
holm integral equation of the second kind. An alternative 
form for the kernels in (15) is derived in Ref. 4. 

We will now go on to show how the methods described 
above can be used to determine T pt(p, z). Let t~(p) denote 
the discontinuity of aT ,,/oz on 1:± lCf. (12)]. A procedure 
analagous to the one used to determine Tim(p, z) shows 
that one can obtain ~(p) from (14)-(17) by making the 
following substitutions in those equations: y~(p)- t~(p), 
Y~(u)- T"m(u), and Ti~(p)- T;"(p), where T~(p) is given by 
(10). The functions T m(p, z) can then be determined from 
(11) by making the substitutions 1)m(P' z)- T m(P' z) and 
y~(p)- ~(p). 

Having derived two sets of Fredholm integral equa
tions of the second kind for Tim(p, z) and T m(P' z) we will 
now derive similar integral equations, the solutions of 
which give /:'m(P' z), Xm(p, z), and 1/J(p, z). 

B. Integral equations for ~m (p,z), Xm (p,z), and -.f;(p,z) 

In deriving integral equations for /:'m(P' z), Xm(p, z), 
and 1/J(p, z) we first note that a /:'m/oz, OX,,/oz, and o1/J/oz 
are continuous functions for all values of z. Next, we let 
x~(p) denote the discontinuity of /:'m(p, z) on 1:±> i. e. , 

x~(p) =lim[ /:'m(P, d - E) -/:'m(P' d +E)]. (18) 
,-0 

From the Green's theorem we can then derive the fol
lowing set of differential-integral equations for x;'(p): 

(19) 

=-a;;,(p), O~p~a_, 

where the differential operator L is given by L = ~ / dp2 
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+p-1d/dp_m2p-2+lr and the functions Km(p,p',z) and 
a~(p) are defined by (13) and (7), respectively. A trans
formation similar to the one used in transforming (13) 
into the set of equations (14)-(15) enables us to trans
form (19) into the following set of integral equations4 : 

2 ra
• x~(p) = _ -; pm)p (u2 _ p2)-1/2 cosh[k(u2 _ p2)1/2] 

where the functions X!(u) satisfy the set of Fredholm 
integral equations of the second kind: 

(20) 

X;;'(u) + foa
+ U m(u, v)X;;,(v)dv + foa- P m(u, v)X;;,(v)dv = G-;,!u), 

(21) 

X;;.(u) + foa+ P m(u, v)X;;'(v)dv + foa- U m(u, v)X;;,(v)dv = G;;'(u) , 

O';;u,;; a_. 

The kernels in (21) are given by the expreSSions, cf. 
(16), U m(u, v) = L(u, v;m, m +!) and P m(u, v) =M(u, v; 
m, m + !), and the right-hand side has the following in
tegral representation: 

G~(u) =U-m-1 ::u [u (u2 _ p2)-1/2 cosh[k(u2 _ p2)1/2]g!,(p)dp, 

where 

Jtm(p) =B;"lp2m+3 + 2A!'+lpm+2J m+1 (kp sina). (22) 

Similarly, to determine Xm(p, z) we denote the disconti
nuity of this function on ~. by w~(p) [cr. (18)] and w~(p) 
can be obtained from (20) -(21) by making the following 
substitutions into those equations: x;.(p)- w!.(p), X~(u)
W"m(u) , and g!.(p)- h~(p), where h; (p) =D;"lp2m+S,. After 
evaluating the expreSSion (20) with the solution of (21) 
the functions ~m(P' z) and Xm(p, z) (m ~ 0) can be calcu
lated from (11) if we make the following substitutions in 
(11): (il/ilz)'I)m(P' z)- ~m(P' z), y!.(p)- x;.(p) and 
(il/ilz)'I)m(P, z)- Xm(p, z), y; (p)- w!.(p), respectively. 

It now remains to determine I/i(p, z). To this end we 
note that ill/i/ilz is continuous on ~t and we denote the dis
continuity of I/i(p, z) on ~. by z.(p) cf. (18)]. The func
tions z.(p) can be obtained from (20) by putting m = 0 in 

(20)-(22) and also substitute into those equations the 
following expressions: x~(p)- z.(p), X5(u)- Z.(u), and 
~(p)- B~p3 - 2(k sina)-lA~p2J1(kp sina). Thus, we have 
reduced the problem of finding I/i(p, z) to the solution of 
the integral equation (21). It should also be pointed out 
here that for m = 0 we have the following explicit repre
sentations of the kernels and the right-hand side in (21): 

Uo(u, v) = N1(u -v) -N1(u +v), 

N1 (u) = (i1TU)-l sinh(ku), 

Po(u, v) =N2(u - v) - N2(u + v), (23) 

N2(u) = 1T-1 exp(2ikd)[2d cosh(ku) + iu sinh(ku)]/(u2 + 4~), 

G~(u) =2k-1B~ sinh(ku) - 2(kcosa)-lA~sinh(kucosa). 

We have now completed our derivation of Fredholm 
integral equations of the second kind the solutions of 
which give the Hertz potentials of the scattered field. As 
we have seen in Sec. II, it still remains to determine 
some unknown constants of integration. These constants 
can be determined from the edge conditions, and in the 
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next section we will formulate these conditions mathe
mati cally in terms of constraints on the solution of the 
integral equations (15) and (21). 

IV. DETERMINATION OF THE UNKNOWN CONSTANTS 
FROM THE EDGE CONDITIONS 

The surface current densities i'(p, cJ» on ~. can be de
termined from the discontinuity of the tangential compo
nent of the scattered magnetic field since the incident 
electromagnetic field is continuous everywhere. In the 
case where the incident magnetic field is parallel to the 
disks, the expansions of i~(p, cJ» in a Fourier series, 

i:(p, cJ» = t i~m(P) cosmcJ> , (24) 
"",0 

combined with Eqs. (2), (3), (12), (14), and (20) give 

i~ = (kEoIi1TZo)/[a.(a. - p)/2]1/2Z.(a.) + o[(a. _ p)1/2], 

i~m = (mEoIiw!lo1Ta.)/[a.(a. - p)/2]1/2[ Y"m(a.) -X~_l(a.)] 

+ O[(a. _p)1/2], m ~ 1, (25) 

as p- a •• Thus, the edge conditions demand that 

Z.(a.) =0, Y~(a.)=X;'_l(a,>, m ~ 1, (26) 

and from (26) we can determine the constants of integra
tion B;', m ~ 0, in (6). 

Similarly, in the case where the incident field is par
allel to the disks, the edge conditions imply that 

(27) 

Again, (27) gives us the relationship that is needed to 
determine the constants D~, m ~ 0, in (10). We wish to 
point out in passing that the edge condition for i!(p, cf» is 
automatically satisfied by the conditions (26) and (27). 

We have now concluded the reduction of the boundary
value problem of electromagnetic scattering from two 
circular, coaxial disks to the mathematical problem of 
solving two sets of Fredholm integral equations of the 
second kind. In the next section we will use the solution 
of these integral equations to calculate the fields along 
the axis of the two disks. 

V. THE ELECTRIC FIELD ON THE AXIS OF THE DISKS 

The electric field on the axis of the two disks is given 
by, cf. (1)-(3), 

il2 

E~(z) =E;nc(z) + Etie(z), e(z) = a?" 1/i(0, z) + k21/i(0, z), (28) 

where 

and 

(29) 

Some manipulations on (29) together with the Sonine' s 
second integral10 give 

I/!*(p, z) = (21Ti)-1 sgn(± d - z) 
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where 

L'''(p, z, d, u) = exp{ik[p2 + (I z 'f d I - iU)2]1/2} 

x[p2+(lndl_iu)2]-1/2, 

sgn(x) = 1(-1) for x> 0« 0), and the real part of the 
square root is positive. From the integral equation (21) 
it is easy to see that Z.(u) = O(u) as u- 0, so that the in
tegral in (30) exists for all values of p and z. We also 
note that the expression (30) satisfies the cf> -independent 
wave equation off the disks. The electric field on the 
axis of the disks can be obtained by differentiating (30). 
In order to obtain expressions more suitable for numer
ical calculations, we proceed as follows: suppose Z~(u) 
and Z~'(u) are differentiable twice. Integrating (30) by 
parts and keeping in mind that Z.(a.) = Z .(0) = 0, we get 

~ (p, z) = (21TW1 sgn(± d - z) 

x [L*(p, z, d, a.) - Yep, z, d, - a.)]Z ~(a.) 

- (21Ti}-1 sgn(± d - z) 

x 1oa
.[y(p, z, d, u) - L'(p, z, d, -u)]Z~'(u)du, 

(31) 

where the prime denotes differentiation with respect to 
u. The functions Z~(u) and Z~'(u) satisfy the integral 
equations 

Z;(u) + 1oa
+ [N1 (u - v) + N1(u + v)]Z;(v)dv 

+ faa- [N2(u - v) +N2(u + v)]Z~(v)dv = G~'(u), 

Zju) + foa+ [N2(u - v) +N2(u + v)]Z;(v)dv 

+ 1oa
- [N1(u - v) +N1(u + v)]Z~(v)dv = Go'(u), 

o~u ~ a_, 
and 

Z~'(u) + 1o
a
+ [N1(u - v) -N1(u +v)]Z~'(v)dv 

+ 1oa-[N2(u - v) - N2(u + v)]Z~'(v)dv= Q+(u) , 

O~u ~ a+, 

Z~'(u) + 1oa
+ [N2(u - v) - N 2 (u + v)]Z;'(v)dv 

+ 1oa- [N1 (u - v) - N1(u + v)]Z~'(v)dv = Q-(u), 

o~u~ a_, 
where 

Q"(u) = G6"(U) + [N1(u + a.) - N1 (u - a,,)]Z~(a.) 

+ [N2 (u + a,,) -N2(u - a,,)]z~(a,,) 

(32) 

(33) 

and N 1 (u), N2(u) , and G6(U) are defined by (23). We note 
that the only difference between the set of integral equa
tions for Z ,,(u) and that for Z~'(u) is in the right-hand 
side. 

The scattered electric field on the axis of the disks 
can be cast into the following form for - d < Z < d, 
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_1T-1 exp[ik(d + z)] 1oa
- N-(z, u)[~Z Ju) - Z~'(u)]du 

_1T-1 exp[ik(d + z)]N-(z, aJZ~(aJ, (34) 

where 

N'(z, u) =[u cosh(ku) +i(z ± d) sinh(ku)]/[u2 + (n d)2]. 

Another quantity of interest is v(d), given by 

V(d)=E01 l:E.(z)dz 

=2k-1tana sin(kdsina) + [Z;(O) -Z~(0)]j2 

where 

- 1o
a
+ [N1 (u) + N2(U)]Z~(u)du 

+ 1oa- [N1 (u) + N2(U)]Z~(u)du 

+ (21Ti)-1~ 1o
a
+ K(u)Z+(u)du 

- (21Ti)"1~ foa- K(u)ZJu)du, 

K(u) = E1 (ku - 2ikd) - E1 (ku) + E1 (- ku - iO) 

-E1(- ku -2ikd) 

(35) 

and E1 (b) is the exponential integral. 11 Equations (34) 
and (35) are suitable for numerical treatment. 

We will now discuss the solutions of the integral equa
tions for Z,,(u), Z~(u), and Z~'(u). The kernels of these 
integral equations are small when the normalized wave
number of the incident wave is small and the distance 
between the two plates is sufficiently large, i. e., when 
f3 = ka« 1 and 1/(= kd) is of order unity. In this case an 
iterative solution of the integral equations can be obtain
ed. For the special but important case where a+ = a_ = a 
this iterative solution gives 

E.(O) =E6[sina + 2 sin2a sin(1j cosa) 

x el~f3S(1/4 + i1/3 - ~ - 2)/ (451T1/6)] + O(J1I) 

(36) 

v(d);:: d1/-1 sin(2a) sin(1j cosa) 

x [cos-2a -f32/6 +[34(11 +6 cos2a)/360] + 0«(36). 

For other frequencies and when the separation between 
the two plates is not large the integral equations can not 
be solved analytically. In this case we solved the inte
gral equations for Z,,(u), Z~(u), and Z~'(u) numerically 
for a+=a_=a, 0<ka<10, d/a=O,l, 0,05, 0,02, and 
a = 18 0, 36 0

, 54 0
, 72 0

• From these numerical solutions 
we then, by simple integrations, calculated e(O) and v(d) 
from (34) and (35). The results of these calculations are 
shown in Figs. 2 and 3. In these figures we have used 
the normalized quantities e' = 1 + e(O)/ sinB and v' = v(d)/ 
(2dsina). Figure 2 shows e' as a function of ka with d/ a 
as a parameter for different values of a. It was found 
that the curves for v' are very similar to those for e' , 
Therefore, the difference quantity e' - v'is plotted in 
Fig. 3 as a function of kawith d/a=O.l, 0.05. For 
d/ a = 0,02 the difference between e' and v' is negligible, 
and hence the corresponding curves are omitted in the 
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FIG. 2. The normalized electric field at the center of the two disks. 

figures. It was found numerically that for ka< 1 we have 
I e' I .. 1- k2,r cos2a/6. To conclude this section, we wish 
to point out that e' = v' = 1 for a = 90 0

, and E.(O, z) = 0 
for a = 0 0

, as expected. 

VI. THE SCATTERED FAR FIELD 

In this section we will express the scattered far field 
and the total scattered power in terms of the solutions 
of the integral equations (15) and (21). To this end we 
will first find a far-field expression for the scattered 
Hertz potentials and then use these expressions to find 
the scattered electric and magnetic far fields. We will 
first treat the case where the incident magnetic field is 
parallel to the disks. The case where the incident elec
tric field is parallel to the disks is then treated in an 
analogous manner. 

From the Green's theorem we can derive the following 
far -field representation of 1j~(p, z), 

11'm(rsinO, rcosO) - (41Tr)-1 exp(ikr) exp('f ikd cosO) 

x Ir:" p'Jm(kp' sinO)y~(p')dp', 

J. Math. Phys., Vol. 15, No.9, September 1974 

(37) 

where (r, 0, cp) are the spherical coordinates (see Fig. 1). 
Substituting the expression (14) for y~(p) into (37) and 
using the Sonine formula, we get, after some algebraic 
manipulations, 

rt. - 1 exp(ikr) Q: (0 k) 
m-;r; kr m" 

where 

Q~(O, k)=(41T)-1 k~ exp('fikdcosO)tanmO 

x fo°" I m_1/ 2(ku cosO) Y~(u)du. 

Similarly, one can derive the following far-field 
expressions: 

where 

" .. - - i exp(ikr) S"( 0 k) 
'+'7Tf kr " 

R~(O, k) = (41T)-1 k~ exp('fikdcosO)tanmO 

x fo°" Im+1/ 2 (kucosO)X""m(u)du 

(38) 

(39) 

(40) 

(41) 

and S"(O, k) is obtained from (41) by making the substitu
tions m = 0, Z .. - X~, and S" - R~ in this equation. 
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FIG. 3. The difference quantity I e' -v' I. 

The scattered electromagnetic field can now be ob
tained from (2), (3), (38), and (39): 

E:c- Eb expWr)"f] [R;'_1(9, k) cosmcp +iksin9S'(9, k)], 
r 7T ... 1 

ESC_E,exp(ikr)"f] [cos9R' (9 k) 
~ 0 r'l7T m=1 m-1' (42) 

- i sin9Q;'(9, k)] sinmcp, 

H8= -Zr/E~, H~ =Zr/Eg, 

where R:" =.R+m + R;" and, similarly, for Q:" and S'. 

The total scattered power p' is given by 

P' = Zr/ J (I Egl2 + I E ~ 12),-2 sin9 d9dcp 

= Eb2Z01 .r..:[2~ sin29 I S' 12 +"f] (I R:'-112 
m~1 

+ Icos9R;"_1 +i sin9Q;,,12)] sin9d9. (43) 

Similarly, when the incident electric field is parallel 
to the disks we obtain the following expressions: 

ESc- _E"exp(ikr)"f] R" (9 k)sinmcp 
8 0 r'l7T m=1 m-1 , , 

J. Math. Phys., Vol. 15, No.9, September 1974 

0.15 
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(d) 

EBC __ E"exp(ikr)"f][cOS9R" (9 k) 
~ 0 rlTi m=1 m-1' 

-isin9Q:,:(9, k)]cosmcp, 

P"=E"2Z-1fr~ [IR" 12+ IcoseR" o 0 -r L.J m-l m-l 
m=l 

- i sin9Q:': 12] sin9 d9, 

1612 

10 

(44) 

where Q:': and R:': have been obtained from (39) and (41) 
by making the following substitutions in those formulas: 
Y~(u)- T!,(u) and X~(u)- W~(u). 

Before concluding this section it is worth pointing out 
that the total scattered power can also be obtained by 
integrating the real part of the Poynting vector over the 
surface of the disks. This method leads to a different 
representation of the total scattered power. 7 

VII. CONCLUDING REMARKS 

The problem of electromagnetic scattering from two 
perfectly conducting, coaxial, circular disks can be re
duced to the solution of a set of Fredholm integral equa
tions of the second kind. Once the solutions of these 
equations have been determined, any field quantity can 
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be obtained by performing simple integrations on these 
solutions. The frequency variation of the field along the 
axis of the two plates has been obtained by solving the 
integral equations numerically for different values of 
radius-to-wavelength ratio as well as separation-to
radius ratio of two equal, coaxial disks. 

Using the principle of analytic continuation we observe 
that the kernels of the integral equations (15) and (21) 
are entire functions of the complex frequency variable 
s. Moreover, the kernels are finite for d* 0 and, hence, 
the solutions of these integral equations are meromor
phic functions of s. This result is, of course, in agree
ment with the results reported previously12 concerning 
the analytical properties of the field scattered from a 
perfectly conducting, finite body. 

It should also be pointed out that the integral equations 
determining electrostatic scattering from two perfectly 
conducting, circular, coaxial disks can be obtained by 
taking the limit as the radius -to -wavelength ratio tends 
to zero of the dynamic integral equations (15) and (21). 
The integral equations thus obtained resemble those ob
tained by Lovel3 when calculating the electrostatic poten
tial of two equal, circular, coaxial, conducting disks 
equally or oppositely charged. 
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